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Abstract. The sequence of numbers starting with 1, 2, 7, 42, 429, 7436, · · · counts several

seemingly different combinatorial objects, which have kept mathematicians busy for the past four

decades in their effort to understand this sequence better. We give a brief historical overview of

these efforts related to only one class of objects that the sequence counts, without claiming to be

comprehensive. We assume basic school level knowledge of linear algebra.

The sequence in the title of this article is given by the following ‘nice’ formula

1!4!7! · · · (3n− 2)!

n!(n+ 1)! · · · (2n− 1)!

or, in a more compact product notation

n−1∏
j=0

(3j + 1)!

(n+ j)!
.

Here k! denotes the product 1 · 2 · 3 · · · k. This formula was conjectured by Mills, Robbins and

Rumsey [MRR83] to count what are called alternating sign matrices (ASMs). By a ‘nice’ formula

like the one above, we combinatorialists usually mean formulas that can be written as products of

factorials or sums of products of factorials1

An alternating sign matrix (ASM) of size n is an n×n matrix with entries in the set {0, 1,−1}
such that

• all row and column sums are equal to 1,

1 There are several other classes of nice formulas that we deal with, but for the purposes of this article, we do not

mention them.
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• and the non-zero entries alternate in each row and column.

For instance, there are 7 ASMs of order 3, these are the six permutation matrices

1 0 0

0 1 0

0 0 1

 ;

1 0 0

0 0 1

0 1 0

 ;

0 1 0

1 0 0

0 0 1


0 1 0

0 0 1

1 0 0

 ;

0 0 1

0 1 0

1 0 0

 ;

0 0 1

1 0 0

0 1 0



and the matrix

0 1 0

1 −1 1

0 1 0

 .

From the definition of ASMs, it is clear that all permutation matrices are ASMs.

But how and why did they decide to study these matrices? To answer that question, we have

to start with the familiar determinants. For the matrix(
a b

c d

)

the determinant is

ad− bc.

For the matrix a b c

d e f

g h i


the determinant is

aei+ bfg + cdh− ceg − bdi− afh.

More generally, for an n× n matrix, A with entries ai,j (1 ≤ i, j ≤ n), the determinant of A is

defined as

det(A) =
∑
σ∈Sn

sgn(σ)

n∏
i=1

ai,σ(i).

Ganit Bikash | Volume 67 | July – December, 2020 45



Article

Determinants appear in all sorts of contexts in combinatorics and they are widely studied. We say

that the determinant is of order n if the matrix is of order n2.

For the remainder of the article, A will always denote an n× n matrix unless otherwise stated.

Given a matrix A, we let Aij denote the matrix that remains when the ith row and jth column of

A are deleted. If we remove more than one row or column, then the indices corresponding to those

are added to the super- and sub- scripts. Determinants can be calculated in an algorithmic way

using the following famous result called the Desnanot-Jacobi identity.

Theorem 1 (Desnanot-Jacobi adjoint matrix theorem). If A is an n× n matrix, then

det(A) det(A1,n
1,n) = det(A1

1) det(Ann)− det(A1
n) det(An1 )

or

det(A) =
1

det(A1,n
1,n)
× det

(
det(A1

1) det(A1
n)

det(An1 ) det(Ann)

)
.

Reverend Charles L. Dodgson, better known by his pen name of Lewis Carroll used Desnanot-

Jacobi theorem to give an algorithm for evaluating determinants in terms of 2 × 2 determinants.

For instance, we get

det

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

 =
1

a2,2

×det


det

(
a2,2 a2,3

a3,2 a3,3

)
det

(
a2,1 a2,2

a3,1 a3,2

)

det

(
a1,2 a1,3

a2,2 a2,3

)
det

(
a1,1 a1,2

a2,1 a2,2

)
 .

This reduces the calculation of an order 3 determinant to calculating four order 2 determinants.

We can go one step further

det


a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

a3,1 a3,2 a3,3 a3,4

a4,1 a4,2 a4,3 a4,4

 =
1

det

(
a2,2 a2,3

a3,2 a3,3

)

× det



det

a2,2 a2,3 a2,4

a3,2 a3,3 a3,4

a4,2 a4,3 a4,4

 det

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

a4,1 a4,2 a4,3


det

a1,2 a1,3 a1,4

a2,2 a2,3 a2,4

a3,2 a3,3 a3,4

 det

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3




.

2 This is an abuse of notation, but we can live with this.
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So, we have now rediued the calculation of an order 4 determinant to calculating four order 3

determinants and one order 2 determinant. One can keep on going in this way to calculate higher

order determinats.

In the 1980s, Robbins and Rumsey looked at a generalization of the 2 × 2 determinant, which

they called the λ-determinant. They defined

detl

(
a1,1 a1,2

a2,1 a2,2

)
= a1,1a2,2 + λa2,1a1,2.

Using the previous observations, they generalized it to an n× n determinant using the algorithmic

way. They wanted to get a closed form expression for the value of this λ-determinant. Their main

result in this direction was the following result.

Theorem 2 (Robbins-Rumsey). Let A be an n × n matrix with entries ai,j, An be the set of all

ASMs, I(B) be the inversion number of B and N (B) be the number of −1’s in B. Then

detl(A) =
∑
B∈An

λI(B)(1 + λ−1)N (B)
n∏

i,j=1

a
Bi,j

i,j .

This was the first appearance of an ASM in the literature.

We briefly mention what the inversion number of an ASM is, which appears in the above theorem.

An easy way to calculate the inversion number is to take products of all pairs of entries for which

one of them lies to the right and above the other, and then adding them all up. For instance we

look at the following order 5 ASM: 

0 1 0 0 0

0 0 1 0 0

1 −1 0 0 1

0 1 −1 1 0

0 0 1 0 0


.

There are seven pairs here whose product is +1 and two pairs whose product is −1. So the inversion

number is 5. This trick will also work for calculating the inversion number of a permutation matrix.

But how does one get to the formula for the number of ASMs from these observations? Let

us look at the above ASM. The first non-trivial observation that we can make is that there

can be only one 1 in the top row (or, first column). This is easy to check (why?). Let An,k

be the number of n × n ASMs with a 1 at the top of the kth column. Some thought will

give us, An,k = An,n+1−k (symmetry). Further, if An is the number of n × n ASMs, then

An,1 = An,n = An−1. This allows one to check small values to get a formula. Mills, Robbins

and Rumsey did exactly that.

They first conjectured the relation

An,k
An,k+1

=
k(2n− k − 1)

(n− k)(n+ k − 1)
.
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This means that the An.k’s are uniquely determined by the An,k−1’s when k > 1 and by

An,1 =
∑n−1

k=1 An−1,k. The above conjecture can be reformulated as

An,k =

(
n+ k − 2

k − 1

)
(2n− k − 1)!

(n− k)!

n−2∏
j=0

(3j + 1)!

(n+ j)!
.

It would be a nice exercise to prove this reformulation from our observations. From here, knowing

that An = An+1,1 allows one to conjecture the formula in the first page

An =

n−1∏
j=0

(3j + 1)!

(n+ j)!
.

.

What about a proof? Doron Zeilberger [Zei96a] succeeded in proving this formula (called the

ASM conjecture) in 1996 using constant term identities3. The proof ran for 84 pages and involved

a team of referees to check all the details, and remains to this day a unique paper in that sense.

Shortly after, Greg Kuperberg [Kup96] gave an alternate proof by exploiting a connection between

ASMs and statistical physics. It turned out that physicists have been studying ASMs under a

different guise since a long time. No one had made the connection before Kuperberg4.

The formula for An,k given above was also proven by Zeilberger [Zei96b] using the techniques

used by Kuperberg. Such type of formulas are called refined enumeration results, because we are

enumerating a class of objects with a refinement, in this case the position of the unique 1 in the first

row. So, we see that a very simple object such as the ASM took a long and sustained effort before

it could be counted. And when it was counted, there were two different proofs in quick succession.

The beauty of a formula lies in its ability to attract such an outcome.

Does the story end here? Of course not, otherwise we would not have been talking about these

objects. In the late 1980’s Richard Stanley [Sta86] suggested the study of various symmetry classes

of ASMs; this let Robbins to conjecture formulas for many of these classes. It turned out to be as

difficult as enumerating ASMs, and this study was only recently completed in 2016.

The dihedral group of symmetries D4 acts naturally on an ASM. This gives rise to the following

symmetry classes (the people who proved the corresponding enumeration formula is given in

parentheses):

• Vertically Symmetric ASMs: ai,j = ai,n+1−j , n odd (Kuperberg 2002)

• Half-turn Symmetric ASMs: ai,j = an+1−i,n+1−j , n odd (Razumov-Stroganov 2005), n even

(Kuperberg 2002)

• Diagonally Symmetric ASMs: ai,j = aj,i, no ‘nice’ formula

3 He proved a more stronger result, but we do not discuss this here.
4 Again, we do not discuss this here, maybe we will discuss in the next edition of this publication.
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• Quarter-turn Symmetric ASMs: ai,j = aj,n+1−i, n odd (Razumov-Stroganov 2005), n even

(Kuperberg 2002)

• Horizontally and vertically Symmetric ASMs: ai,j = ai,n+1−j = an+1−i,j , n odd (Okada 2004)

• Diagonally and Antidiagonally Symmetric ASMs: ai,j = aj,i = an+1−j,n+1−i, n odd (Behrend-

Fischer-Konvalinka 2017)

• All symmetries: ai,j = aj,i = ai,n+1−j , no ‘nice’ formula.

For instance, a vertically symmetric ASM of order 7 is the following



0 0 0 1 0 0 0

0 1 0 −1 0 1 0

1 −1 0 1 0 −1 1

0 0 1 −1 1 0 0

0 1 −1 1 −1 1 0

0 0 1 −1 1 0 0

0 0 0 1 0 0 0


Are ASMs worth studying only because they are difficult to enumerate? Again the answer is

an emphatic NO. They are intimately related to other objects that combinatorialists study such

as plane partitions, descending plane partitions, non-intersecting lattice paths, etc. It would go

beyond the scope of this article to discuss them in detail. We close this article with a tantalizing

open problem related to ASMs and plane partitions.

A plane partition in an a× b× c box is a subset

PP ⊂ {1, 2, · · · , a} × {1, 2, · · · , b} × {1, 2, · · · , c}

with (i′, j′, k′) ∈ PP if (i, j, k) ∈ PP and (i′, j′, k′) ≤ (i, j, k). It is easy to visualize a plane partition,

although an equivalent definition exists in terms of arrays of numbers with certain monotonicity

conditions. Below we can ‘see’ a plane partition in an 3× 4× 4 box.

Like ASMs, combinatorialists are also interested in symmetry classes of plane partitions.

One of these symmetry classes is the class of totally symmetric self-complementary plane
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partitions. If a plane partition has all the symmetries (that is, (i, j, k) ∈ PP if and only if all six

permutations of (i, j, k) are also in PP ) and is its own complement (that is, if (i, j, k) ∈ PP then

(2n + 1 − i, 2n + 1 − j, 2n + 1 − k) /∈ PP ), then it is called totally symmetric self-complementary

plane partitions(TSSCPP). An example of such a TSSCPP is given below.

The class of TSSCPPs inside a 2n× 2n× 2n box are known to be equinumerous with n×n ASMs.

However, a bijective proof of this result is still not known and is considered to be one of the most

important open problems in all of combinatorics.

There are many things that can be said about ASMs other than the ones discussed here. Instead

of hearing it from this author, we refer the interested reader to the beautiful the book of Bressoud

[Bre99] which discusses all the developments until the year 1999. The book also contains a wealth

of information about other aspects of combinatorics and is strongly recommended by this author.

For a brief overview of where things stand at the present moment, the recent articles of Behrend,

Fischer and Konvalinka [BFK17] and that of Fischer and this author [FS21] contains useful surveys

of known results until 2016 and 2019 respectively.
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