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Numbers have always fascinated human beings. The world of science would certainly not be able

to do anything without numbers. So it is very important for us to understand them. The first

numbers known to humans were the natural numbers, that is, the numbers 1, 2, 3, . . .. As Leopold

Kronecker famously said “God created the natural numbers. All else is the work of man.” In this

article, we will learn about understanding real numbers and their behaviour.

The reason we are interested in it is because we want to understand how real numbers behave,

especially the irrational numbers. We know that an irrational number is a real number that cannot

be expressed in the form
p

q
, where p and q are integers. The properties of natural numbers, integers,

rational numbers are easy to be understood, but the problem lies in the understanding of irrational

numbers. These are the numbers that are non terminating and non recurring, i.e., their decimal

expansion never ends and that too without any pattern. In these circumstances it is really difficult

to predict the behaviour of irrational numbers. So, mathematicians tried to understand them by

approximating them with the help of rational numbers. The study of approximating real numbers

with the help of rational numbers is called Diophantine approximation. Also, many important ideas

in Number Theory stem from notions of Diophantine approximation.

We begin by defining the notion of a simple continued fraction expansion.

Definition 1. A simple continued fraction expansion for a real number a is given by:

a = a0 +
1

a1 +
1

a2 +
1

. . . +
1

an

,

where n is a nonnegative integer and a0 is an integer and ai is positive for i = 1, 2, 3, . . . , n.
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The numbers a0, a1, . . . , an are called partial denominators. For simplicity, conventionally, the

simple continued fraction above is denoted by [a0; a1, . . . , an]. The simple continued fraction made

from [a0; a1, . . . , an] by cutting off the expansion after the kth partial denominator ak is called

the kth convergent of the given simple continued fraction and is denoted by Ck; in symbols,

Ck = [a0; a1, . . . , ak].

Convergents are very mportant in the theory of Diophantine approximation. This is because cover-

gents are the closest approximations to any real number. This is explained in the following theorem:

Theorem 2. For any rational number
a

b
such that 1 ≤ b ≤ qk, we have∣∣∣∣x− pk
qk

∣∣∣∣ ≤ ∣∣∣x− a

b

∣∣∣ .
Equality in the last relation holds if pk = a and qk = b.

This helps us to find targets for making better approximations of a real number. We’ll take a

look at how this works with the help of a few examples.

Example. Let us take the example of π. The simple continued fraction for π is given by [3;

7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, . . .], with 3,
22

7
,
333

106
,
355

113
, and

103993

33102
being the first few

convergents. For a better understanding let us write π as

π = 3 +
1

7 +
1

15 +
1

. . .

.

Clearly, the first convergent is 3. The second convergent is calculated as follows: We cut down the

expression at the point where 7 is the denominator. So, the second convergent is 3 +
1

7
=

21 + 1

7
=

22

7
. Similarly, other convergents can be calculated.

Next we observe the following: Consider the convergent
22

7
of π. From the above theorem, We

have ∣∣∣∣x− 22

7

∣∣∣∣ ≤ ∣∣∣x− a

b

∣∣∣ .
for any a, b ∈ Z. That is, the fraction

22

7
is closer to π than any other rational number whose

denominator b is such that 1 ≤ b ≤ 7. A natural question now is what happens when the denomi-

nator b of
a

b
is greater than 7. In that case we choose the next convergent of π, i.e.,

333

106
and now

this is a better approximation of π than
22

7
as now it is closer to any other rational number whose

denominator b is such that 1 ≤ b ≤ 106. From here we can understand that as we go searching for

more convergents we end up with better approximations of π. For other irrational numbers too, the
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same idea can be applied to approximate them.

Another interesting theorem is the Dirichlet approximation theorem. The theorem is as follows:

Theorem 3. (Dirichlet approximation theorem). Let x ∈ R and let Q be a real number exceeding 1.

Then there exist integers p and q with 1 ≤ q < Q and (p, q) = 1 such that

|qx− p| ≤ 1

Q
.

Proof. This proof is a beautiful application of the box theorem or the pigeonhole principle.

Write N = [Q], and consider the N + 1 real numbers

0, 1, {x}, {2}, · · · , {(N − 1)x},

where {x} is the fractional part of x. These N + 1 real numbers all lie in the interval [0, 1]. But

if we divide this unit interval into N disjoint intervals of length 1/N, it follows that there must be

two numbers from the above set which necessarily lie in the same interval. The difference between

these two real numbers has the form qx−p where p and q are integers such that 1 < q < N Thus we

deduce that there exist integers p and q with 1 ≤ q < Q such that |qx− p| ≤ 1

Q
. The reason (p, q)

= 1, is because we want
p

q
in lowest terms. Otherwise, the coprimality can be seen if we divide both

sides of the inequality by (p, q).

Corollary. For any irrational number x, there exist infinitely many pairs of integers p, q for which∣∣∣∣x− p

q

∣∣∣∣ ≤ 1

q2
.

From the above corollary, we can see that if we want to approximate an irrational number with

the help of a rational number within a distance of
1

100
, then we have to make sure that the conver-

gent we are choosing should not have a denominator greater than 10.

As one can observe, the continued fraction expansion of π is infinite. A natural question that

comes to our mind is whether this will happen for all irrational numbers! The answer is indeed

true. Another question that might come to our mind is whether the continued fraction expansion

of rational numbers is finite! The situation in this case is that, in case of rational numbers the

continued fraction expansion is finite. Which brings us to the following theorem:

Theorem 4. A real number is rational if and only if the continued fraction expansion associated

with it is finite and, a real number is an irrational number if and only if the continued fraction

expansion associated with it is infinite.

The case of an irrational number is π. Let us now understand what happens in the case of a

rational number with the help of an example.
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Example. Let us choose the rational number
15

7
. Now we can write

15

7
= 2 +

1

7
.

This will happen with all the rational numbers. Now, as the example shows that all the rational

numbers have a finite convergent, it is very easy to understand them because we can study the prop-

erties of all the convergents and understand their behaviour with the help of all the convergents.

Unlike rational numbers, we cannot write all the convergents of irrational numbers. So, we can only

understand them by getting close to them and the best possible way to do it is by taking the help

of rational numbers whose properties are easier to understand.

The reader should now be in a better position to realise the importance of Diophantine approx-

imation. It is advised to the reader take a look at the proofs of the theorems and the corollary

which are not proved here. The reader is also advised to look at few more examples like e,
1 +
√

5

2
(The golden ratio), etc to understand the beauty of this topic. This will lead to various irrational

numbers whose approximation is yet to done to a great extent.

“In a way, mathematics is the

only infinite human activity. It is

conceivable that humanity could

eventually learn everything in

physics or biology. But human-

ity certainly won’t ever be able

to find out everything in mathe-

matics, because the subject is in-

finite. Numbers themselves are

infinite. That’s why mathemat-

ics is really my only interest.”

– Paul Erdős

31 Ganit Bikash | Volume 69 | April - June, 2021


