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Abstract. These series of articles (three in total) are aimed at olympiad contestants, focuses

on solving olympiad Number Theory problems using analytic techniques and making contestants

familiar with common techniques and results in this topic. We started with the Prime Number

Theorem, giving an elementary proof of the weak version and establishing a few well known

estimates for the two Chebyshev functions. We also showed Mertens’ first theorem on the fly

and discussed Mertens’ second theorem, asymptotic density and equidistribution theorem. In this

concluding part we will present some problems.

7. Problems

All the problems below don’t necessarily use the theory discussed in this series of articles. Many

of the following problems are hard so don’t get demotivated.

7.1. Exercises

If you are experienced then you may skip this section.

Exercise 7.1. Let A be a set of positive integers with positive asymptotic density. Prove that sum

of reciprocals of elements of A is divergent.

Exercise 7.2. If the density of A ⊂ N and B ⊂ N is zero then prove that density of A∪B is zero.

Exercise 7.3. You are given a string of base-10 digits. Prove that you can append some finite

number of digits so that the resultant number becomes a power of 2.

Exercise 7.4. Define ω(n) to be the number of distinct prime divisors of n. Prove that∑
n≤x

ω(n) = x log log x+O(x).

1 Editor’s Note: Part I (in Volume 67) contained section 1 and Part II (in Volume 68) contained sections 2 through

6.
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Exercise 7.5. Prove that ∏
p

(
1− 1

p

)
= 0,

where the product is over all primes p.

Exercise 7.6. Let r2(n) be the number of ways n can be written as a sum of two perfect squares.

Prove that

lim
n→∞

r2(1) + r2(2) + · · ·+ r2(n)

n
= π.

Exercise 7.7 (Mathotsav). We say that a positive integer t is good if the density of positive

integers n such that n2 + t is square-free is at least 0.99.

(a) Prove that the density of square free numbers is 6
π2 .

(b) Prove that infinitely many natural numbers are good.

(c) Prove that there exists a positive constant c and a natural number N , such that for all n > N ,

the number of natural numbers less than n which are good is at least cn.

7.2. Easy

Problem 7.1 (Iranian Our MO 2020). Consider two sequences xn = an + b, yn = cn + d where

a, b, c, d are natural numbers and gcd(a, b) = gcd(c, d) = 1, prove that there exist infinite n such

that xn, yn are both square-free.

Problem 7.2 (Iran 3rd round 2010/8). Prove that there are infinitely many natural numbers of

the form n2 + 1 such that they don’t have any divisor of the form k2 + 1 except 1 and themselves.

Problem 7.3 (China TST 2005). Prove that for any n (n ≥ 2) pairwise distinct fractions in the

interval (0, 1), the sum of their denominators is no less than
1

3
n

3
2 .

Problem 7.4 (China TST 2004). Let u be a fixed positive integer. Prove that the equation

n! = uα − uβ has a finite number of solutions (n, α, β).

Problem 7.5 (IMO Shortlist 2011/A2). Determine all sequences (x1, x2, . . . , x2011) of positive

integers, such that for every positive integer n there exists an integer a with

2011∑
j=1

jxnj = an+1 + 1.

Problem 7.6 (China TST 2010, Miklos Schweitzer, Paul Erdos). Given positive integers n and k

such that n ≥ 9k, prove that
(
n
k

)
has at least k different prime divisors.
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Problem 7.7 (IMO ShortList 2003/N4). Let b be an integer greater than 5. For each positive

integer n, consider the number

xn = 11 · · · 1︸ ︷︷ ︸
n−1

22 · · · 2︸ ︷︷ ︸
n

5,

written in base b.

Prove that the following condition holds if and only if b = 10: there exists a positive integer M

such that for any integer n greater than M , the number xn is a perfect square.

Problem 7.8 (Vesselin Dmitrov). Prove that the set of positive integers n such that

1
2n(n+ 1)(n+ 2)(n2 + 1)

is square free has positive density.

Problem 7.9 (Miklos Schweitzer). Prove that the set of positive integers n such that τ(n) | n has

density 0.

7.3. Medium

Problem 7.10 (ARMO 2012 Grade 11 Day 2). For a positive integer n define

Sn = 1! + 2! + . . .+ n!.

Prove that there exists an integer n such that Sn has a prime divisor greater than 102012.

Problem 7.11 (AoPS). Prove that n! = m3+8 has only finitely many solutions in positive integers.

Problem 7.12 (China TST 2 Day 1 P1). Let n be a positive integer. Let Dn be the set of all

divisors of n and let f(n) denote the smallest natural m such that the elements of Dn are pairwise

distinct in mod m. Show that there exists a natural N such that for all n ≥ N , one has f(n) ≤ n0.01.

Problem 7.13 (Paul Erdos, Miklos Schweitzer). Let a1 < a2 < · · · < an be a sequence of positive

integers such that ai − aj | ai for all i ≤ j. Prove that there is a positive constant c such that for

any such sequence of length n, a1 > ncn.

Problem 7.14. (Tuymaada 2011, Senior Level) Let P (n) be a quadratic trinomial with integer

coefficients. For each positive integer n, the number P (n) has a proper divisor dn, i.e., 1 < dn <

P (n), such that the sequence d1, d2, d3, . . . is increasing. Prove that either P (n) is the product of

two linear polynomials with integer coefficients or all the values of P (n), for positive integers n, are

divisible by the same integer m > 1.

Problem 7.15. (Turkey TST 2015/6) Prove that there are infinitely many positive integers n such

that (n!)n+2015 divides (n2)!.

Problem 7.16 (China TST 2015). Let a1, a2, a3, . . . be distinct positive integers, and 0 < c < 3
2 .

Prove that: There exist infinitely many positive integers k, such that lcm(ak, ak+1) > ck.
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Remark 7.1. The bound cannot be improved to lcm(ak, ak+1) > k1+δ for some δ > 0.

Problem 7.17 (USA TSTST 2017/6). A sequence of positive integers (an)n≥1 is of Fibonacci type

if it satisfies the recursive relation an+2 = an+1 + an for all n ≥ 1. Is it possible to partition the

set of positive integers into an infinite number of Fibonacci type sequences?

Problem 7.18 (Tuymaada 2007/8). Prove that there exists a positive c such that for every positive

integer N among any N positive integers not exceeding 2N there are two numbers whose greatest

common divisor is greater than cN . (Bonus: Strengthen the bound.)

7.4. Hard

Problem 7.19 (IMO 2015/N6). Let Z>0 denote the set of positive integers. Consider a function

f : Z>0 → Z>0. For any m,n ∈ Z>0 we write fn(m) = f(f(. . . f︸ ︷︷ ︸
n

(m) . . .)). Suppose that f has the

following two properties:

(i) if m,n ∈ Z>0, then fn(m)−m
n ∈ Z>0;

(ii) The set Z>0 \ {f(n) | n ∈ Z>0} is finite.

Prove that the sequence f(1)− 1, f(2)− 2, f(3)− 3, . . . is periodic.

Problem 7.20 (China TST 2018 Day 2 Q2). Given a positive integer k, call n good if among(
n

0

)
,

(
n

1

)
,

(
n

2

)
, . . . ,

(
n

n

)
at least 0.99n of them are divisible by k. Show that exists some positive integer N such that among

1, 2, . . . , N , there are at least 0.99N good numbers.

Problem 7.21 (Paul Erdos). For any δ > 0 prove that there are at least (23 − δ)
n

log2 n
primes

between n and 2n for sufficiently large n. (Using the full power of PNT would be cheating.)

Problem 7.22 (XIII Brazilian Olympic Revenge 2014). Let a > 1 be a positive integer and

f ∈ Z[x] with positive leading coefficient. Let S be the set of integers n such that

n | af(n) − 1.

Prove that S has density 0; that is, prove that limn→∞
|S ∩ {1, . . . , n}|

n
= 0.

Problem 7.23 (PRIMES 2020 M5). We say an integer n ≥ 2 is chaotic if for any monic nonconstant

polynomial f(x) with positive integer coefficients, the set

{f(1), f(2), . . . , f(n)}

contains fewer than 10deg f · n

log n
prime numbers. Are there finitely many chaotic integers?
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Remark 7.2. There is a theorem by Nagell & Heilbronn which says that for any f ∈ Z[x], the

number of primes in {|f(1)|, |f(2)|, . . . , |f(n)|} is O(n/ log n) but unfortunately the proof is beyond

the scope of Olympiad Mathematics.

Problem 7.24 (Marius Cavachi, AMM). Let a and b be integers greater than 1 such that

an − 1 | bn − 1 for every positive integer n. Prove that b is a natural power of a.

Remark 7.3. You can relax the condition to “for infinitely many positive integers n” instead

of “for every positive integer n” and the problem would still hold. However the proof of this is

non-elementary.

Problem 7.25 (Fedor Petrov). Does there exist c > 0 such that among any n positive integers

one may find 3 with least common multiple at least cn3?

8. Solutions to selected examples

8.1. Example 1.12

Let’s suppose we want g(n) = k. Choose a large enough natural t such that 2t < q < 2t(1+ε) where

q is a prime. Note that n = q2k22kt works because all such k divisors are of the form qk+i2t(k−i) for

i = 1, 2, . . . , k. No other divisor works because for any fixed power of q we can have only one power

of 2 which may work.

8.2. Example 1.15 (EMMO 2016 Sr, Anant Mudgal)

Part (b) is easy so we only solve part (a). Assume the contrary that all sufficiently large indices

are divisor friendly. We have that

an - lcm(a1, a2, . . . , an−1)

for all n > K, say. Observe that there must exist some sequence of primes qn such that if

bn = q
νqn (an)
n for n > K then qn divides none of the preceding terms ai for i > K. See that

all the bn’s must be distinct. Obviously b1, b2, . . . , bn ≤ 9000n and bi are distinct prime powers.

Number of prime powers at most 9000n is less than

S =
∑

p≤9000n
logp 9000n = log 9000n

∑
p≤9000n

1

log p

≤ log 9000n

 ∑
p<
√
9000n

1

log p
+

∑
√
9000n≤p≤9000n

1

log p


≤ log 9000n

(√
9000n

log 2
+

1

log
√

9000n
· (π(9000n)− π(

√
9000n))

)

= log 9000n

(√
9000n

log 2
+

1

log
√

9000n
· O
(

n

log n

))

= log 9000n · O
(

n

log2 n

)
= O

(
n

log n

)
,
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in the last second step we used PNT. This is a contradiction for large enough n since there are n

distinct prime powers at most 9000n, namely b1, b2, . . . , bn. And we are done.

8.3. Example 5.3 (Canada MO 2020/4)

Consider (9999n+ 4999)2 and (9999n+ 5000)2, verify that their difference is divisible by 9999, call

a pair of such perfect squares good. Fix some large N. Check that the number of such pairs less

than N is bounded below by c
√
N for some constant c > 0. All perfect powers between such a pair

must be odd perfect powers. Number of odd perfect powers ab less than N is at most

S = N1/3 +N1/5 +N1/7 + · · · ,

where the number of summands is at most log2N as a ≥ 2 except for the trivial perfect power 1.

Therefore S = O(N1/3 logN), which is less than c
√
N for all large N. Thus there exists infinitely

many good pairs.

8.4. Example 5.6 (Iran 3rd round 2011)

(Solution by Superguy) We are going to prove the bound qn ≤ 35n for part (a). Let’s assume for

the sake of contradiction that there exists n such that qn > 35n, here suppose n is minimal.Then

suppose r is the minimal index such that qn | ar then r > 35
2
3
n(♣). So all of {a1, a2, . . . , ar−1} have

prime factors in set {q1, q2, . . . , qn−1}. Call this set of primes as P. We clearly have

r−1∑
k=1

1

a
1
3
k

≥
r−1∑
k=1

1√
k
. (1)

Clearly RHS in (1) is greater than 2
√
r−2 which can be shown using easy integration or induction.

Consider the following claim.

Claim.
r−1∑
k=1

1

a
1
3
k

≤
∏
p∈P

[∑
m≥0

p−
1
3
m
]
≤ 5(3.27)n−2,

where |P | = n− 1.

Proof. Note that all of ak are of the form qk11 ·q
k2
2 · · · q

kn−1

n−1 where all ki are non-negative which gives

the left side inequality. For right side we have that the sum
∑

m≥0 p
− 1

3
m is maximum for p = 2 and

next greatest value is achieved by p = 3 and the value of the sum for p = 2 is less than 5 and for

p = 3 the sum would be less than 3.27 Now observe∏
p∈P

[∑
m≥0

p−
1
3
m
]
≤ 5(3.27)n−2.

So we get the claim.

Now by our claim, (1),(♣) and the fact that

ln(2 · 35
n
3 ) < ln(2 · 35

n
3 − 2) + 1 for all natural n,
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we get that we should have

ln(2)− 1 +
n · ln(35)

3
− ln(5)− (n− 2)(ln(3.27)) < 0. (2)

Now we are going to prove the opposite inequality. Taking the function in LHS as f(n) we get that

f(n) is increasing. Hence we just need to check for n = 1 which we get that f(1) > 0. Thus we

have proved the opposite inequality and thus the contradiction for our initial assumption. For part

(b) exact similar process can give a nice bound of some qn < 300n. �

8.5. Example 5.7 (IMO 2008/3 improved)

Define

f(N) =
∏
n≤N

(n2 + 1).

Let us assume that the largest prime divisor of f(N) is t. Let f(N) =
∏
p p

αp be the prime

factorisation of f(N), each prime p > N can divide n2 + 1 for at most two different values of n,

and so αp ≤ 2 in this case. See that α2 = bN/2c. For p ≤ x, if p | n2 + 1, then n2 ≡ −1 mod p

which has solutions if and only if p ≡ 1 (mod 4), and in that case there will be at most 2dN/pe
values of n for which p | n2 + 1. Similarly, if pk | n2 + 1, then n2 ≡ −1 mod pk, and there are at

most 2 solutions to this congruence and hence at most 2dN/pke values of n for which pk | n2 + 1.

Combining, we find that for p ≤ N and p ≡ 1 (mod 4)

αp ≤ 2

⌈
N

p

⌉
+ 2

⌈
N

p2

⌉
+ 2

⌈
N

p3

⌉
+ · · ·+ 2

⌈
N

pk

⌉
,

where k =
⌈
logpN

⌉
. This gives that

αp ≤
2N

p− 1
+ 2

(
logpN + 1

)
,

since 1 +
1

p
+

1

p2
+ · · ·+ 1

pk
≤ 1

1− 1/p
. Thus,

f(N) ≤ 2N/2
∏
p≤N

p≡1 (mod 4)

p
2N
p−1

+2 logp(N)+2
∏

N<p≤t
p≡1 (mod 4)

p2,

and so,

f(N) ≤ 2N/2
∏
p≤N

p≡1 (mod 4)

N2
∏
p≤N

p≡1 (mod 4)

p
2N
p−1

∏
p≤t

p≡1 (mod 4)

p2.

Taking the logarithm

log f(N) ≤ 2 logN
∑
p≤N

p≡1 (mod 4)

1 + 2N
∑
p≤N

p≡1 (mod 4)

log p

p− 1
+

∑
p≤t

p≡1 (mod 4)

log p+
N

2
log 2.

By PNT for AP and with some computations we can see that the RHS is asymptotic to N logN+t.

Notice that

f(N) ≥
∏
n≤N

n2 = (N !)2 = N2N +O(N),
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combining, we get that

2N logN +O(N) ≤ log f(N) ≤ N logN + t+ o(N logN),

now if t ≤ (1 − ε)N logN for all large N then the above is false for sufficiently large N, which is

what we wanted.

8.6. Example 5.10 (STEMS 2020 B3/C5, Arka Karmakar)

Clearly b 6= 1. Note that the leading coefficient of f must be positive and f ∈ Q[x]. For now assume

that f is non-constant. Consider the following claims.

Claim 1. For n, i ∈ N let f(an + ai) = bt(n,i) + bm(n,i) where t(n, i) ≥ m(n, i). And let

i1, i2, i3, . . . , ik ∈ N, then it follows that t(n, i1) = t(n, i2) = . . . = t(n, ik) for all large n.

Proof. Let i > j be two positive integers. It is obvious that t(n, i) ≥ t(n, j) for all large n. Observe

that

1 = lim
n→∞

f(an + ai)

f(an + aj)
= lim

n→∞

bt(n,i) + bm(n,i)

bt(n,j) + bm(n,j)

= lim
n→∞

1 + bm(n,i)−t(n,i)

bt(n,j)−t(n,i) + bm(n,j)−t(n,i)

≥ lim
n→∞

1

b−(t(n,i)−t(n,j)) + b−(t(n,i)−m(n,j))

≥ lim
n→∞

1

2b−(t(n,i)−t(n,j))

=
1

2
lim
n→∞

bt(n,i)−t(n,j).

If b > 2 we get t(n, i) = t(n, j) for all sufficiently large n. So let b = 2 then either t(n, i) = t(n, j)

for all sufficiently large n or t(n, i) = t(n, j) + 1 for all sufficiently large n. We assume the later.

Then note that,

1 = lim
n→∞

bt(n,i) + bm(n,i)

bt(n,j) + bm(n,j)
= lim

n→∞

2 + 2m(n,i)−t(n,j)

1 + 2m(n,j)−t(n,j) ≥ lim
n→∞

2

1 + 2m(n,j)−t(n,j) ,

which implies that m(n, j) = t(n, j) for all large n. Let i > j > 1. Hence we obtain

f(an + ai) = 2t(n,j)+1 + 2m(n,i),

f(an + aj) = 2t(n,j)+1,

f(an + a) = 2t(n,1) + 2m(n,1),

for all large n.. Now we must have t(n, 1) = t(n, j). Again using the same reasoning as above we

will get m(n, 1) = t(n, 1) which will mean f(an + aj) = f(an + a) for all large n. Contradiction!

Hence the claim.

Let us introduce some notation: Let i ∈ N and define tn and A(n, i) such that

f(an + ai) = btn + bA(n,i),

for all large n (here we are using the previous claim, and tn is independent of i for small i). Let

f(x) = xd(xg(x) + c) where c 6= 0 and g ∈ Q[x].
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Claim 2. Let p be a prime such that p | b then p | a.

Proof. Assume that gcd(a, b) = 1. Let r be some positive integer. Notice that ac1φ(b
r)+d1 +

ac2φ(b
r)+d2 ≡ ad1 + ad2 (mod br). Therefore if we take c1, c2 → ∞ then using the previous claim,

we get br | f(ac1φ(b
r)+d1 + ac2φ(b

r)+d2) =⇒ br | f(ad1 + ad2). Now taking r to be sufficiently large

we get f(ad1 + ad2), which means that f ≡ 0, this is a contradiction to our assumption that f is

non-constant.

Claim 3. Let N ∈ N be a constant. Then it follows that {A(n, i)}Ni=1 forms an A.P. for large

enough n and a is a power of b.

Proof. Let p | gcd(a, b) be a prime. Now consider

(an + ai)d((an + ai)g(an + ai) + c) = btn + bA(n,i).

Taking νp of both sides and n→∞,

diνp(a) + νp(c) = A(n, i)νp(b) =⇒ A(n, i) =
idνp(a) + νp(c)

νp(b)
.

Hence the claim. Notice that the above also gives us that νp(b)(A(n, i + 1) − A(n, i)) = dνp(a),

which means both a and b have the same set of prime divisors. Now if a prime q divides both a

and b then by the same reasoning we have that

A(n, i) =
idνq(a) + νq(c)

νq(b)
=
idνp(a) + νp(c)

νp(b)
,

taking i = 1, 2 we get that
νq(a)

νq(b)
=
νp(a)

νp(b)
=⇒ a = br,

for some r ∈ N.

Finishing the problem is easy using the above claim.
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