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This section contains unsolved problems, whose solutions we ask from the readers, which we

will publish in the subsequent issues. All solutions should preferably be typed in LaTeX and

emailed to the editor. If you would like to propose problems for this section then please send

your problems (with solutions) to the above mentioned email address, preferably typed in

LaTeX. Each problem or solution should be typed on separate sheets. Solutions to problems

in this issue must be received by 20 March, 2022. If a problem is not original, the proposer

should inform the editor of the history of the problem. A problem should not be submitted

elsewhere while it is under consideration for publication in Ganit Bikash. Solvers are asked

to include references for any non-trivial results they use in their solutions.

Problem 12. Proposed by B. Sury (Indian Statistical Institute, Bengaluru).

Let P be a 2× 2 integer matrix such that its trace is 0. Show that there exist real n× n integer

matrices A,B such that P = AB −BA.

Problem 13. Proposed by B. Sury (Indian Statistical Institute, Bengaluru).

Let p(x) =
∑r

i=1 aix
i, q(x) =

∑s
i=1 bix

i be polynomials with integer coefficients. Suppose a

positive integer n divides every coefficient of the polynomial p(x)q(x). Prove that n divides aibj for

each i, j.
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Solutions to Old Problems

We received correct solutions to Problems 7 and 9 from Amit Kumar Basistha (Anundoram

Borooah Academy, Pathsala, India) and to Problem 8 from Preyarnsi Saikia (Indian Institute of

Technology Delhi). Problems 10 and 11 from the previous issue are still open.

Solution 7. Solved by Amit Kumar Basistha and the proposers. The solution below is by Ayan

Nath (Chennai Mathematical Institute).

The only answers are x 7→ cx3 where c is some real constant, it is easily verified that they work.

Make the substitution x = −a3 + b3 + c3, y = a3 − b3 + c3 and z = a3 + b3 − c3, we get

f(x) + f(y) + f(z) + 24f
(
1
2

3
√
(x+ y)(y + z)(z + x)

)
= f(x+ y + z).

Call the above assertion P (x, y, z). Note that P (0, 0, 0) =⇒ f(0) = 0. And P (−x, x, x) =⇒
f(−x) = −f(x). Observe that

P (x, y, 0) =⇒ f(x) + f(y) + 24f
(
1
2

3
√

xy(x+ y)
)
= f(x+ y),

P (x, y + z, 0) =⇒ f(x) + f(y + z) + 24f
(
1
2

3
√
x(y + z)(x+ y + z)

)
= f(x+ y + z),

which implies

f(x) + f(y) + f(z) + 24f
(
1
2

3
√
yz(y + z)

)
+ 24f

(
1
2

3
√
x(y + z)(x+ y + z)

)
= f(x+ y + z).

Therefore

f
(
1
2

3
√

yz(y + z)
)
+ f

(
1
2

3
√
x(y + z)(x+ y + z)

)
= f

(
1
2

3
√
(x+ y)(y + z)(z + x)

)
.

Define g : R → R as g(x) = f(12
3
√
x). The above implies that

g (yz(y + z)) + g (x(y + z)(x+ y + z)) = g ((x+ y)(y + z)(z + x)) .

Since yz(y + z) + x(y + z)(x+ y + z) = (x+ y)(y + z)(z + x) we hope that we can obtain Cauchy’s

Functional Equation. Consider the two equationsa = yz(y + z),

b = x(y + z)(x+ y + z).

We claim that the above is always solvable in reals for any a, b ∈ R. Set y + z = t. Solving the

second equation in x we obtain x =
−t2 ±

√
t4 + 4bt

2t
and solving the first equation in y we get

y =
t2 ±

√
t4 − 4ta

2t
. We just need to ensure that both discriminants are non-negative which is

obvious as we take a large t. Therefore we obtain that g(a) + g(b) = g(a+ b) for all a, b ∈ R. Since
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g is monotonic it follows that g(x) ≡ kx for some constant k ∈ R which implies that f(x) = 8kx3.

And we are done.

Remark: The general solution without the monotonicity constraint is given by f(x) = A(x3) where

A : R → R is any additive function.

The solution by Amit Kumar Basistha was also along similar lines. There were two more solutions

submitted by the proposers.

Editor’s Note: This problem appeared in an obscure AoPS olympiad, Universal

Mathematical Olympiad 2020 as Problem 1.

Solution 8. Solved by Preyarnsi Saikia and the proposer. The solution below is by Preyarnsi Saikia

(Indian Institute of Technology Delhi).

Claim: Any subgroup of index 3 must be normal, that is, if K < G such that

∣∣∣∣GK
∣∣∣∣ = 3, then

K ◁G.

Generalised Cayley’s Theorem: If G has a subgroup of index n (say H), then there is a

homomorphism f from G to Sn. Then Kernal of this homomorphism is contained in H. Moreover,

if N is a normal subgroup of G such that N ⊂ H then N ⊂ Kerf .

If G has a subgroup of index 3 then

∣∣∣∣GH
∣∣∣∣ = 3. From the Generalised Cayley’s Theorem,

∃f : G −→ S3. So by the First Homomorphism Theorem,
G

Kerf
∼= f(G) < S3. Let Kerf = K =⇒

G

K
∼= f(G) < S3. Hence possibilities for f(G) are {e}, {e, (12)}, {e, (13)}, {e, (23)}, {e, (123), (132)}

and S3.

Case 1 f(G) = S3 =⇒ G

K
∼= S3. Then

G

K
has a subgroup

S

K
whose order is 3. o

(
G

S

)
=

O


(
G

K

)
(
S

K

)
 =

o

(
G

K

)
o

(
S

K

) =
6

3
= 2. (Using Third Isomorphism Theorem) This proves that

G has a subgroup of index 2, which is a contradiction. Thus f(G) ̸= S3.

Case 2 f(G) = {e} =⇒ G

K
∼= {e} =⇒ G = K. But from Generalised Cayley’s Theorem

K ⊂ H ̸= G =⇒ G ̸= K. Therefore f(G) ̸= {e}.

Case 3 f(G) = {e, (12)}/{e, (13)}/{e, (23)} =⇒
∣∣∣∣GK

∣∣∣∣ = 2, which is a contradiction. Therefore

f(G) ̸= {e, (12)}/{e, (13)}/{e, (23)}

Case 4 The only possibility is
G

K
∼= {e, (123), (132)} =⇒

∣∣∣∣GK
∣∣∣∣ = 3 And k = Kerf ◁ G. Hence, any

subgroup of index 3 must be normal.
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Solution 9. Solved by Amit Kumar Basistha and the proposer. The solution below is by B. Sury

(Indian Statistical Institute, Bengaluru).

One has the polynomial identity

[(n−1)/2]∑
r=0

(−1)r
(
n− 1− r

r

)
xr(1 + x)n−1−2r = 1 + x+ · · ·+ xn−1

by induction on n. The right hand side equals xn−1
x−1 =

∏n−1
r=1 (x − e2irπ/n). It is crying out that we

combine the terms corresponding to r and n− r; if n is even, there is a middle term corresponding

to r = n/2 which is x+ 1. We obtain

(n−2)/2∑
r=0

(
n− 1− r

r

)
(

−x

(1 + x)2
)r(1 + x)n−1 = (x+ 1)

n
2
−1∏

r=1

(x2 − 2xCos(2πr/n) + 1).

Let us take for x a solution of the quadratic equation (x+1)2 = −x (that is, x2+3x+1 = 0). Thus,

one has for even n,

(1 + x)n−1

(n−2)/2∑
r=0

(
n− 1− r

r

)
= (−x)(n−2)/2(1 + x)

(n−2)/2∏
r=1

(3 + 2Cos(2πr/n)).

As (1 + x)2 = −x, we have for even n that (1 + x)n−1 = (1 + x)(−x)(n−2)/2 which, therefore, gives

the first formula :

Fn =

[(n−1)/2]∏
r=1

(3 + 2Cos(2πr/n)) ∀ n ≥ 1

where, as usual, the usual convention is that an empty product equals 1. Using this expression, here

is a proof of the well-known fact Fm divides Fmn for all m,n ≥ 1. In the expression

Fmn =

[(mn−1)/2]∏
r=1

(3 + 2Cos(2πr/mn)),

there are terms corresponding to r = n, 2n, · · · , n[m−1
2 ] since n[m−1

2 ] ≤ [mn−1
2 ]. Each of these terms

is also a term for Fm and, in fact, comprise of all the terms of Fm ! Hence Fmn/Fm is a product

of expressions of the form 3 + 2Cos(2πr/mn). Each of these is an algebraic integer and thus, the

ratio Fmn/Fm is simultaneously an algebraic integer and a rational number. Hence the ratio is an

integer.

The solution by Amit Kumar Basistha was also along similar lines.
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