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Abstract. In this article, we construct a bijection and its inverse to show that Dyck paths are

counted by the Catalan numbers.

1. Introduction

The Catalan numbers is one of the most favourite sequences, if not the most favourite sequence, of

combinatorialists. The first few Catalan numbers are

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, . . .

which is the sequence A000108 in the OEIS. The nth Catalan number is given by the famous formula

Cn =
1

n+ 1

(
2n

n

)
. (1)

The Catalan numbers are named after the French and Belgian mathematician Eugène Catalan

(1814-1894). However, this is also a case of Stigler’s law of eponomy, which states that no scientific

discovery is named after its original discoverer. In fact, Euler knew about this sequence and mentions

it in a letter that he wrote to Goldbach in 1751. The earliest known reference to this sequence is by

the Mongolian mathematician Minggatu (1692-1763) who discovered it and used it in his works in the

1730s. See [1] and references therein for a detailed historical discussion on Catalan numbers.

The Catalan numbers are ubiquitous in counting problems which is one of the primary reasons for

its popularity. It occurs in several counting problems, most often in problems involving objects with

a recursive structure. Some of the well known Catalan objects are:
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(i) Dyck paths,

(ii) Unlabelled rooted binary trees,

(iii) Number of vertices of an associahedron,

(iv) Non-crossing partitions.

Richard Stanley has compiled a list of 66 different objects in [2, Exercise 6.19], and 214 objects in

his book [3], all of which are counted by the Catalan numbers. Video lectures by Xavier Viennot on

The Catalan Garden are available online at [4, Chapter 2].

In this article, we shall only study Dyck paths, and provide a bijective proof that they are counted

by the formula in equation (1).

We first introduce Dyck and binary paths, and then state our main theorem in Section 2. We then

study the structure of Dyck and binary paths more closely in Section 3. Finally, we construct the

forward bijection in Section 4 and the reverse bijection in Section 5 to show that Dyck paths are

counted by the formula in equation (1). However, a detailed proof that our construction works is

omitted.

2. Definition of Dyck Paths and Statement of Main Theorem

We use N to denote the set of non-negative integers which is the set {0, 1, 2, . . .}. For i, j ∈ Z, let
[i, j] := {i, i+1, . . . , j}. Thus, the cardinality of [i, j] is i− j+1 whenever i ≤ j and 0 otherwise. Let

[n] := [1, n] for n ∈ N. By an integer lattice point (or lattice point in short) we shall mean an ordered

pair (x, y) ∈ Z2 and we shall think of it as a point in the Cartesian plane. A step is an ordered pair

of lattice points p1 and p2 which we denote by p1 → p2. If p1 = (x1, y1) and p2 = (x2, y2), then

(x1 − x2, y1 − y2) is called the form of the step p1 → p2. We shall think of p1 → p2 as a directed

line segment starting at p1 and ending at p2. Figure 1 is an illustration of the step (0, 0) → (3, 2).

A lattice path of length n is a sequence of n + 1 lattice points p0, . . . , pn such that pi ̸= pj for any

0 ≤ i, j ≤ n, i ̸= j. Figure 2 is an example of a lattice path of length 6 given by the sequence of

points (0, 0), (2, 1), (3,−1), (0, 2), (−1, 0), (−2, 2), (2, 3).

Definition 2.1. A binary path of semilength n is a lattice path of length 2n beginning at the origin

(0, 0) and ending at (2n, 0) where each step is either of the form (1, 1) or (1,−1). Let Bn denote the

set of all binary paths of semilength n. Figures 3 and 4 are examples of binary paths of semilength

3.

Definition 2.2. A Dyck path of semilength n is a binary path of semilength n, in which none of

the points are below the x-axis. We use Dn to denote the set of all Dyck paths of semilength n.

Figure 4 is an example of a Dyck path of semilength 3, while Figure 3 is not an example of Dyck

path as the path crosses the x-axis.

We shall refer to steps of the form (1, 1) as northeast steps and denote such a step using ↗ (northeast
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(3,2)
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Figure 1: An illustration of the step (0, 0) → (3, 2).

x

y

Figure 2: The lattice path of length 6 given by the sequence of points

(0, 0), (2, 1), (3,−1), (0, 2), (−1, 0), (−2, 2), (2, 3).

arrow). Similarly, we shall refer to steps of the form (1,−1) as southeast steps and denote such a

step using ↘ (southeast arrow). We leave it as an exercise to the reader to show that a binary

path of semilength n bijectively corresponds to a word1 of length 2n on the alphabet {↗,↘} with

both ↗ and ↘ occurring exactly n times. We shall call this word the arrow word of the binary

path.

1 Given a set A (the alphabet) a word is a finite sequence of elements from A, which are not necessarily distinct. For

brevity, we denote the word (a1, a2, . . . , an) by a1a2 · · · an.
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Figure 3: An example of a binary path of semilength 3.

x

y

Figure 4: An example of a Dyck path of semilength 3.

For example, arrow word of the binary path in Figure 3 is ↗↘↘↘↗↗ and the arrow word of the

binary path in Figure 4 is ↗↘↗↗↘↘.

As the number of words of length 2n on the alphabet {↗,↘} with both ↗ and ↘ occurring exactly

n times is

(
2n

n

)
, so is the cardinality of Bn.

We intend to show that the cardinality of Dn is

|Dn| =
1

n+ 1

(
2n

n

)
, (2)

We can rewrite this equation as

(n+ 1)|Dn| =
(
2n

n

)
,

which is equivalent to showing that

|[0, n]×Dn| = |Bn| (3)

as we just saw that the cardinality of Bn is

(
2n

n

)
, and we know that the cardinality of [0, n] is

n+ 1.

We now state our main theorem:

Theorem 2.1. The sets [0, n]×Dn and Bn are in bijective correspondence with each other.

Thus, proving Theorem 2.1 also provides a proof for equations (2) and (3).
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3. Structure of Dyck and binary paths

Let B ∈ Bn be a binary path given by the sequence of points p0, . . . , p2n where pi = (xi, yi) with

p0 = (x0, y0) = (0, 0) and p2n = (x2n, y2n) = (2n, 0). Let w = w1 · · ·w2n be its arrow word. Let

NE(B) = {u1, . . . , un} where u1 < . . . < un are all the indices for which wui =↗. Similarly, let

SE(B) = {d1, . . . , dn} where d1 < . . . < dn are all the indices for which wdi =↘.

For example, if B is the binary path in Figure 3, then NE(B) = {1, 5, 6} and SE(B) = {2, 3, 4}. If

B is the binary path in Figure 4 then NE(B) = {1, 3, 4} and SE(B) = {2, 5, 6}.

The index ui corresponds to the step

(xui−1, yui−1) = pui−1 → pui = (xui , yui)

where

xui = xui−1 + 1 (4)

and

yui = yui−1 + 1. (5)

Similarly, the index di corresponds to the step

(xdi−1, ydi−1) = pdi−1 → pdi = (xdi , ydi)

where

xdi = xdi−1 + 1 (6)

and

ydi = ydi−1 − 1. (7)

In the special case when B is a Dyck path, we have that yi ≥ 0 for all i ∈ [2n] and hence from

equation (5), yui ≥ 1 for all indices ui. It is not difficult to show that for every ui with yui−1 = h,

i.e. the step pui−1 → pui starts at height h and ends at height h + 1, there is atleast one dj > ui

such that ydj = h, i.e. the step pdj−1 → pdj starts at height h + 1 and ends at height h. We use

dσ(i) to denote the index of the smallest such step, i.e., for i ∈ [n] with yui−1 = h, σ(i) denotes the

smallest j ∈ [n] for which dσ(j) > ui and ydj = h.

Notice that for any pk = (xk, yk) with ui < k < dσ(i), we have that yk > h. Given a northeast

step pui−1 → pui , we shall call pdσ(i)−1 → pdσ(i)
its corresponding southeast step. See Figure 5 for a

colour coded example.

4. The Forward Bijection ϕ : [0, n]×Dn → Bn

Let D ∈ Dn be a Dyck path given by the sequence of points p0, . . . , p2n where pi = (xi, yi) with

p0 = (x0, y0) = (0, 0) and p2n = (x2n, y2n) = (2n, 0). Let w = w1 · · ·w2n be its arrow word. Let

NE(D) = {u1, . . . , un} where u1 < . . . < un and let SE(D) = {d1, . . . , dn} where d1 < . . . < dn.
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Figure 5: Dyck path for the arrow word ↗↘↗↗↘↗↘↘. The different steps of the form

↗ and their corresponding steps of the form ↘ have been coloured using the same colour.

Here, u1 = 1, u2 = 3, u3 = 4, u4 = 6, d1 = 2, d2 = 5, d3 = 7, d4 = 8 and σ(1) = 1, σ(2) = 4, σ(3) = 2,

σ(4) = 3.

For a fixed i ∈ [n], let u = ui, d = dσ(i), and h = yu. Here h is the height at which the ith northeast

step ends. Let NEi(D) := {v1, . . . , vh = u} ⊆ NE(D) with v1 < . . . < vh, where vj ≤ u is the largest

index with yvj = j. Let SEi(D) ⊆ SE(D) be the set of indices of the southeast steps corresponding

to the steps at the indices NEi(D).

Let a = a1 · · · a2n be the arrow word where each aj is defined as follows:

aj =


wj if j ̸∈ NEi(D) and j ̸∈ SEi(D),

↘ if j ∈ NEi(D),

↗ if j ∈ SEi(D).

(8)

We can finally define our map ϕ : [0, n] × Dn → Bn. For (i,D) ∈ [0, n] × Dn, we define ϕ(i,D) as

ϕ(i,D) =

D if i = 0,

B if i ̸= 0 ,
(9)

where B is the binary path obtained from the arrow word a defined in equation (8).

Let us illustrate this by the example in Figure 6. LetD be the Dyck path of semilength 5 in Figure 6a

and let i = 2. Then, NEi(D) = {1, 2} and SEi(D) = {5, 8} and the steps with these indices have

been coloured in red. The arrow word of D is w = ↗↗ ↗↘ ↘ ↗↘ ↘ ↗↘, and the arrow word

a as per equation (8) is a = ↘↘ ↗↘ ↗ ↗↘ ↗ ↗↘. The corresponding binary path ϕ(2, D) is

the binary path in Figure 6b.

5. The Reverse Bijection ψ : Bn → [0, n]×Dn

Let B ∈ Bn be a binary path given by the sequence of points p0, . . . , p2n where pi = (xi, yi) with

p0 = (x0, y0) = (0, 0) and p2n = (x2n, y2n) = (2n, 0). Let w = w1 · · ·w2n be its arrow word.

Let −h = mini∈[0,2n] yi be the lowest possible height of a point. We know that h = 0 if and only if

B is a Dyck path.
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If h > 0, then for 1 ≤ j ≤ h, let d′j denote the smallest index such that yd′j = −j, and let u′j denote

the largest index such that yu′
j−1 = −j. Note that the step pd′j−1 → pd′j is a southeast step, and

that the step pu′
j−1 → pu′

j
is a northeast step.

We state the following lemma before constructing our map ψ.

Lemma 5.1. Let

w = w(1) ↘ w(2) ↗ w(3)

where

w(1) = w1 · · ·wd′h−1,

w(2) = wd′h+1 · · ·wu′
h−1,

w(3) = wu′
h+1 · · ·w2n.

Also, let w′ be the word

w′ = w(1) ↗ w(2) ↘ w(3),

B′ be the binary path given by the arrow word w′, and let p′0 = (x′0, y
′
0), . . . , p

′
2n = (x′2n, y

′
2n) be the

points of B′. Then the lowest possible height of B′ is

min
j∈[0,2n]

y′j = −(h− 1).

Proof. It is clear that the abscissa of p′j are given by

x′j = j,

and the ordinates are given by

y′j =


yj if j ≤ d′h − 1,

yj if j ≥ u′h + 1,

yj + 2 if d′h ≤ j ≤ u′h.

If j ≤ d′h − 1 or j ≥ u′h +1, then the minimum height is −(h− 1), and if d′h ≤ j ≤ u′h, the minimum

height is −h+ 2. Thus, we get that

min
j∈[0,2n]

y′j = −(h− 1).

Let b = b1 · · · b2n be the arrow word where each letter bi are given by:

bi =


wi if i ̸= d′j and i ̸= u′j for all 1 ≤ j ≤ h,

↘ if i = u′j for some 1 ≤ j ≤ h,

↗ if i = d′j for some 1 ≤ j ≤ h.

(10)
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(a) Arrow word

w = ↗↗ ↗↘ ↘ ↗↘ ↘ ↗↘

x

y

(b) Arrow word w = ↘↘ ↗↘ ↗ ↗↘ ↗ ↗↘

Figure 6: Figure 6a is a Dyck path D of semilength 5 with the arrow word w = ↗↗ ↗↘ ↘ ↗↘
↘ ↗↘. For i = 2 we have NEi(D) = {1, 2} and SEi(D) = {5, 8} and the steps with these indices

have been coloured in red.

The binary path B in Figure 6b is of semilength 5 and has the arrow word w = ↘↘ ↗↘ ↗ ↗↘
↗ ↗↘. The first and last steps ending at negative heights have been coloured in red.

Let D be the binary path given by the word b. We can see that the word b can be written as

b = (. . . ((w′)′) . . .)′︸ ︷︷ ︸
h times

,

and hence from Lemma 5.1, D is a Dyck path.

We can finally define the map ψ : Bn → [0, n]×Dn. For B ∈ Bn, ψ(B) is given by

ψ(B) =

(0, B) if B is a Dyck path,

(i,D) if B is not a Dyck path
(11)

where D is the Dyck path obtained from the arrow word b defined in equation (10), and i is the

number of occurences of ↗ in the prefix b1 · · · bd′h of the word b.

Let us illustrate this by the example in Figure 6. Let B be the binary path of semilength 5 in

Figure 6b. Here h = 2. The first and the last steps ending at each negative height have been

coloured in red. The arrow word of B is w = ↘↘ ↗↘ ↗ ↗↘ ↗ ↗↘, and the arrow word b as

per equation (10) is b = ↗↗ ↗↘ ↘ ↗↘ ↘ ↗↘. The corresponding pair ψ(B) is (2, D) where D

is the Dyck path in Figure 6a.
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“Unless you are exceptionally brilliant and can solve a

long-standing problem of great interest (consider Yitang

Zhang coming out of nowhere to make a spectacular

breakthrough in number theory), it will be really

beneficial to your career to produce your own research

problems, the more the better (within reason). Always

keep your eyes and ears open to possible interesting

problems. If for instance a seminar speaker mentions

a problem that you like and is more-or-less in an

area about which you are knowledgeable, then don’t

hesitate to think about it! Don’t think, “I never worked

on hyperconvex residuated posets, so how could I get

anywhere?” Play around with it a little– maybe you will

think of something. It might suggest a related question.

Do some experiments, gather some data, etc. Doing some

computations might suggest a further idea, even if the

computations themselves don’t seem helpful. Moreover,

if you decide to stop working on a problem, do not think

that you are giving up. You never know when some

random remark at a seminar or in a paper might be the

key to further progress. Keep these unsuccessful attempts

in the back of your mind, ready to be let out if the door

is opened a crack.”

– Richard P. Stanley

41 Ganit Bikash | Volume 71 | October - December, 2021

https://arxiv.org/abs/1408.5711
https://www.math.ucla.edu/~pak/papers/cathist4.pdf
https://www.viennot.org/abjc1-ch2.html
https://www.viennot.org/abjc1-ch2.html
https://www.viennot.org/abjc2.html
https://www.viennot.org/abjc2.html

