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1. Introduction

Microfluidics is the study of science and technology that considers flow of fluids and suspensions of

particles at a scale of the order of microns. Precise handling of fluids and suspension in a miniaturized

and isolated environment have made the microfluidics more appealing for biological research [1]. For

example, sorting and separation of microparticles in a continuous flow is required for chemical

synthesis, mineral process, and biological applications [2]. Further, the mixing of reactants/reagents

has paramount importance in biological processes, viz., drug delivery, enzyme reactions, protein

synthesis. On the other hand, droplet-based microfluidics, which uses a discrete volume of fluids,

reduces the sample size and is ideal for biological, chemical, and food processing [4, 5]. The separation

of diseased cells (such as cancer, sickle cell anemia, malaria infection, etc.) from the normal ones

can be achieved using microfluidic techniques [3]. Further, coalescence of droplets has widespread

applications viz., micro reactor, mixing of reagents in chemical and pharmaceutical industries [6].

In general, microfluidics methods can be classified broadly in to two categories, viz., passive and

active techniques [2]. In passive methods, the characteristics of fluid flow, fluid properties and the

microchannel design are primarily utilized for manipulation of micron-sized objects suspended in

fluids without any application of external forces. On the other hand, the suspensions in fluid is

subjected to an external perturbation which in turn drives the flow. Although passive methods are

cheaper as it doesn’t require any external forcing, however, high throughput can be achieved using

active methods.

Active methods for micro flow handling are based on the use of external forcing via electric,

magnetic, optical and acoustics [7]. Despite the significant advancement in active microfluidics

methods, the development of an efficient technique that is gentle, contact-less and biocompatible

continues to remain a challenge. The ability to use acoustic waves to manipulate microparticles

solely based on their mechanical properties in microfluidics is known as acousto-microfluidics which

is proven to possess the above characteristics [8]. An acoustofluidics device is consists of different

solid substrates, i.e., silicon substrates where the microchannel is fabricated, a glass surface to cover
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microchannel from the top, a transducer which is attached to the silicone surface for actuation. A

typical acoustofluidics device setup is shown in Figure 1.
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Figure 1. Schematic of an acousto-microfluidics device. Syringe pumps are used to flow fluids and

suspensions inside the microchannel. The transducer is actuated using a function generator at the

resonance frequency and the signal is amplified using an amplifier.

Usually, acousto-microfluidics devices are operated at half resonance modes, i.e., the channel

width of is taken as half of the acoustic wavelength. Since, microfluidics devices are sizes of hundred

of microns, ultrasound waves in the low MHz range is best suited for microfluidics applications [9].

For example, if the frequency of actuation is f ≥ 1.5 MHz, considering water as the fluid (i.e., speed

of sound Cwa ≈ 1.5 × 103 ms−1), the wavelength obtained is about λwa ≤ 1 mm. Therefore, the

micon range half resonance mode can be achieved which may fit in to the submilimeter channels

and cavities. Use of resonance modes are advantageous as they are usually stable and reproducible.

We can control the spatial pattern formed by the resonance modes (pressure nodes and antinodes

formation). Further, the maximum acoustic power defined in terms of acoustic energy density is

delivered from the transducer at the resonance.

Here, we will be deriving the acoustic wave equation using regular first order perturbation theory.

We will also discussed about the acoustic streaming field using the second order perturbation theory.

Prediction of first and second order acoustic fields are shown in the next section. Finally, a brief

summary and discussion is presented in Section 4.

2. First order perturbation theory: the wave equation

Sound waves require a medium for propagation whereas the light waves can travel in vacuum. The

medium is generally considered as a fluid medium although sound can travel through solid object.
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Therefore, acoustics is actually a special case of fluid dynamics. The acoustic wave equation should

be derived from the fundamental equation of fluid dynamics. The basic equations of fluid mechanics

are,

p = p(ρ), (2.1)

∂tρ = −∇.(ρv), (2.2)

and

ρ∂tv = −∇p− ρ(v.∇)v + η∇2v + βη∇(∇.v). (2.3)

Before applying acoustic wave, let us consider a quiescent (steady) fluid with constant density ρ0

and pressure p0. Let an acoustic wave constitute tiny perturbation (subscript 1) in the fields of

density ρ, pressure p and velocity v.

ρ = ρ0 + ρ1, p = p0 + p1 = p0 + c20ρ1, v = 0+ v1. (2.4)

Since sound wave is adiabatic, we perform the isentropic expansion of pressure about equilibrium,

p = p0 +

(
∂p

∂ρ

)
0

(ρ− ρ0) + · · · = p0 +

(
∂p

∂ρ

)
0

ρ1 + · · · = p0 + c20ρ1 + · · · . (2.5)

Now from Equation 2.2,

∂t (ρ0 + ρ1) = −∇. [(ρ0 + ρ1)v1]

= ∂tρ1 = −ρ0∇.v1 −∇. (ρ1v1) .

Neglecting the higher order term (product of the first order term) we have,

∂tρ1 = −ρ0∇.v1. (2.6)

From Equation (2.3),

(ρ0 + ρ1)∂tv1 = −∇
(
p0 + c20ρ1

)
− (ρ0 + ρ1) (v1.∇)v1 + η∇2v1 + βη∇ (∇.v1)

=> ρ0∂tv1 + ρ1∂tv1 = −c20∇ρ1 − ρ0 (v1.∇)v1 − ρ1 (v1.∇)v1 + η∇2v1 + βη∇ (∇.v1) .

Again, neglecting the product of first order term we get,

ρ0∂tv1 = −c20∇ρ1 + η∇2v1 + βη∇ (∇.v1) . (2.7)

Now, taking time derivative of Equation 2.6 and using Equation (2.7), we have

∂2
t ρ1 = −∇. (ρ0∂tv1)

= −∇.
[
−c20∇ρ1 + η∇2v1 + βη∇ (∇.v1)

]
= c20∇2ρ1 − η∇2 (∇.v1)− βη∇2 (∇.v1)

= c20∇2ρ1 − η(1 + β)∇2 (∇.v1)

= c20∇2ρ1 −
η(1 + β)

−ρ0
∇2 (∂tρ1)

= c20

(
1 +

η(1 + β)

ρ0c20
∂t

)
∇2ρ1.
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Therefore,

∂2
t ρ1 = c20

[
1 +

(1 + β)η

ρ0c20
∂t

]
∇2ρ1. (2.8)

Let us assume harmonic time dependence of all fields,

ρ1 = ρ1(r)e
−iωt, p1 = c20ρ1(r)e

−iωt, v1 = v1(r)e
−iωt. (2.9)

where ω = 2πf is the angular frequency and f is the frequency of the acoustic field. Using the

harmonic fields equation we can further simplify the Equation (2.8),

∂2
t

(
ρ1e

−iωt
)
= c20

[
1 +

(1 + β)η

ρ0c20
∂t

]
∇2

(
ρ1e

−iωt
)

=> −ω2
(
ρ1e

−iωt
)
= c20

[
1 +

(1 + β)η

ρ0c20
× (−iω)e−iωt

]
∇2 (ρ1)

=> −ω2

c20
p1 =

[
1− i

(1 + β)ηω

ρ0c20

]
∇2

(
c20ρ1e

−iωt
)

=> −ω2

c20
p1 =

[
1− i

(1 + β)ηω

ρ0c20

]
∇2p1

=> −k20p1 = [1− i2γ]∇2p1,

where k0, a real valued wave number and γ, acoustic damping factor defined by

k0 = ω/c0 (2.10)

and

γ =
(1 + β)ηω

2ρ0c20
. (2.11)

For smallness of γ, we can approximate [1− i2γ] ≈ [1 + iγ]−2 and we have,

−k20p1 = [1− i2γ]∇2p1

=> −k20p1 = [1 + iγ]−2∇2p1

=> ∇2p1 = −k20[1 + iγ]2p1

=> ∇2p1 = −k2p1,

where k = k0[1 + iγ] is the complex wave number. The Helmholtz equation for damped waves is

given as,

∇2p1 = −k2p1. (2.12)

As γ ≪ 1, we can neglect the viscosity of the bulk part of the acoustic wave. Then we have,

∇2p1 = −k20p1

=> ∇2p1 = −ω2

c20
p1.

Since, ∂te
−iωt = −iωe−iωt => ∂t ∼ −iω => i∂t ∼ ω, we can modify the above equation as,

∇2p1 = −(i∂t)(i∂t)

c20
p1

∇2p1 =
1

c20
∂2
t p1.
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For non-viscous flows, we have the more familiar wave equation as,

∇2p1 =
1

c20
∂2
t p1. (2.13)

The solution of 1D wave equation is of form p1(x, t) = p1(x ± c0t). Pressure perturbation at t = 0

propagates a distance ±c0t in time t, c0 indeed can be interpreted as the speed of sound.

In the inviscid limit and using the harmonic time dependence field, Equation (2.7) can be written

as,

ρ0∂tv1 = −c20∇ρ1

=> ρ0(−iω)v1e
−iωt = −c20∇ρ1e

−iωt

=> −ρ0iωv1 = −∇(c20ρ1)

=> v1 =
1

iρ0ω
∇(p1)

=> v1 = − i

ρ0ω
∇(p1).

For a inviscid flow, we can defined velocity potential as v = ∇ϕ. Therefore,

v1 = − i

ρ0ω
∇p1

=> ∇ϕ1 = − i

ρ0ω
∇p1

=> ∇ϕ1 = −∇
(

i

ρ0ω
p1

)
=> ϕ1 = − i

ρ0ω
p1.

The relation between first order velocity potential and pressure is given by,

ϕ1 = − i

ρ0ω
p1. (2.14)

Thus, both velocity and density can be calculated from the pressure field p1.

2.1. First order equations

The first order continuity and momentum equations are given by Equation 2.6 and Equation 2.7.

Usually, the acoustic fields are excited by a single-frequency vibration of the boundaries. When the

system has stabilized in a steady oscillatory state, the first-order fields can be described by pure

harmonics, oscillating with the excitation frequency ω. The solution can then be expressed in the

frequency domain instead of the time domain, and we use the complex notation

g1(r, t) = Re
[
g1(r)e

−iωt
]
, (2.15)

and

∂tg1 = −iωg1. (2.16)
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Considering only the steady state solution, the first order equations can be transformed from time

domain to frequency domain,

−iωρ1 = −ρ0∇.v1 (2.17a)

−iωρ0v1 = −c20∇ρ1 + η∇2v1 + βη∇ (∇.v1) . (2.17b)

Equation (2.17) together with a set of boundary conditions constitute a steady-state first-

order acoustic problem under the assumptions of adiabatic thermodynamics and single frequency

vibrations of the boundaries.

2.2. The wave equation for the first-order velocity field v1

The wave equation for the first-order velocity field v1 is in general not simple to establish. However,

in the special case of zero rotation i.e., ∇× v1 = 0. Let us consider the vector identity,

∇× (∇× v1) = ∇(∇.v1)−∇2v1

=> 0 = ∇(∇.v1)−∇2v1

=> ∇2v1 = ∇(∇.v1).

Let us consider the first order continuity equation,

∂tρ1 = −ρ0(∇.v1).

For harmonic time dependent first order density field, ρ1 = ρ1e
−iωt we have,

∂tρ1 = ρ1(−iω)e−iωt

= − iω

c20
(c20ρ1e

−iωt)

= − iω

c20
p1.

Therefore,

−ρ0(∇.v1) = − iω

c20
p1

=> ∇.v1 =
iω

ρ0c20
p1.
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Now, considering the Equation (2.7) and assuming harmonic time dependent velocity field we have,

ρ0∂tv1 = −c20∇ρ1 + η∇2v1 + βη∇ (∇.v1)

=> ρ0(−iω)e−iωtv1 = −∇(c20ρ1) + η∇ (∇.v1) + βη∇ (∇.v1)

=> ρ0(−iω)v1 = −∇(p1) + (η + βη)∇ (∇.v1)

=> ρ0(−iω)v1 = −∇(p1) + (η + βη)∇
(

iω

ρ0c20
p1

)
=> ρ0(−iω)v1 = −∇(p1) + (i2γ)∇p1

=> ρ0(−iω)v1 = − (1− i2γ)∇p1

=> v1 =
−i

ρ0ω (1 + iγ)2
∇p1

=> ∇ϕ1 =
−i

ρ0ω (1 + iγ)2
∇p1

=> ϕ1 =
−i

ρ0ω (1 + iγ)2
p1.

3. Second-order perturbation theory: acoustic streaming

There are two time scales involved in acousto-microfluidics problem. One is the fast time scales of the

order µs which occurs due to the acoustic oscillation in the fluid medium and the other is the slowly

evolving time scales due to the time averaged acoustic field. Since first order time-averaged field

vanishes to zero, it is utmost important to understand the second order field using the perturbation

analysis,

p = p0 + p1 + p2 ρ = ρ0 + ρ1 + ρ2 v = 0+ v1 + v2. (3.1)

Here, all the zeroth order and first order terms are assumed to be known. Neglecting the higher

order term,

p = p0 +

(
∂p

∂ρ

)
0

(ρ− ρ0) +
1

2

(
∂2p

∂ρ2

)
0

(ρ− ρ0)
2 + . . .

= p0 +

(
∂p

∂ρ

)
0

(ρ1 + ρ2) +
1

2

(
∂2p

∂ρ2

)
0

(ρ1 + ρ2)
2 + . . .

= p0 +

(
∂p

∂ρ

)
0

ρ1 +

(
∂p

∂ρ

)
0

ρ2 +
1

2

(
∂2p

∂ρ2

)
0

(
ρ21 + ρ22 + 2ρ1ρ2

)
+ . . .

= p0 +

(
∂p

∂ρ

)
0

ρ1︸ ︷︷ ︸
p1

+

(
∂p

∂ρ

)
0

ρ2 +
1

2

(
∂2p

∂ρ2

)
0

ρ21︸ ︷︷ ︸
p2

+ . . . .

Therefore, the second order equation of state is given as,

p2 =

(
∂p

∂ρ

)
0

ρ2 +
1

2

(
∂2p

∂ρ2

)
0

ρ21. (3.2)

Here, we can define dimensional pre-factor
ρ0(∂2

ρp)0
(∂ρp)0

which is known as a non-linear parameter γ∗− 1

of the fluid,
ρ0

(
∂2
ρp
)
0

(∂ρp)0
= γ∗ − 1. (3.3)
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Therefore, from Equation (3.2) it follows,

p2 = c20ρ2 +
1

2
(γ∗ − 1)

c20
ρ0

ρ21. (3.4)

Considering the first order continuity equation (Equation (2.6)), we proceed from Equation (2.2) as

follows,

∂tρ = −∇.(ρv)

=> ∂t(ρ0 + ρ1 + ρ2) = −∇.[(ρ0 + ρ1 + ρ2)(v1 + v2)]

=> ∂tρ1 + ∂tρ2 = −ρ0∇.v1 − ρ0∇.v2 −∇.(ρ1v1)−∇.(ρ1v2)−∇.(ρ2v1)−∇.(ρ2v2)

=> ∂tρ1 + ρ0∇.v1︸ ︷︷ ︸
Equation (2.6)

+∂tρ2 = −ρ0∇.v2 −∇.(ρ1v1)−∇.(ρ1v2)−∇.(ρ2v1)−∇.(ρ2v2)︸ ︷︷ ︸
higher order term

=> ∂tρ2 = −ρ0∇.v2 −∇.(ρ1v1).

The second order continuity equation is given by,

∂tρ2 = −ρ0∇.v2 −∇.(ρ1v1). (3.5)

Similarly, using the Equation (2.7) and neglecting the higher order terms(collecting only the second

order terms) we have the second order momentum equation as,

ρ0∂tv2 = −∇p2 + η∇2v2 + βη∇(∇.v2)− ρ1∂tv1 − ρ0(v1.∇)(v1). (3.6)

Equations (3.5) and (3.6) can be further split into two sets of equation. In steady state the

second-order variables consist of a steady component and an oscillatory component oscillating at

2ω, similar to product of two sines, sin(ωt)sin(ωt) = 1
2 − 1

2cos(2ωt). The steady component is

denoted by superscript “0” and the oscillatory second-order component is denoted by superscript

“2ω”,

g2(r, t) = (g2(r, t))
0 + (g2(r, t))

2ω (3.7a)

=< g2(r, t) > +Re
(
g2ω2 (r)e−i2ωt

)
. (3.7b)

This decomposition is valid only when considering a steady periodic state, and it is essentially a

temporal Fourier decomposition of the second-order fields. < g2 > denotes time-averaging over one

oscillation period t0 = 2π
ω and in steady state it equals the zero-order temporal Fourier component

of the field

(g2(r, t))
0 =< g2(r, t) >=

1

t0

∫ t+t0/2

t−t0/2
g2(r, t

′)dt′ (3.8)

g2ω2 (r) is the complex amplitude of the secondary oscillatory mode, equivalent to g1(r) in Equation

(2.15), and is given by the second-order Fourier component

g2ω2 (r) =
1

t0

∫ t+t0/2

t−t0/2
g2(r, t

′)e−i2ωt′dt′. (3.9)
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3.1. The time average of a product of time-dependent functions

Consider the real physical quantities A(t) and B(t) with harmonic time variation,

A(t) = Re[A0e
−iωt], B(t) = Re[B0e

−iωt], (3.10)

where A0 and B0 are complex amplitudes. Rewriting A(t) and B(t) as follows,

A(t) =
1

2

[
A0e

−iωt +A∗
0e

iωt
]
, B(t) =

1

2

[
B0e

−iωt +B∗
0e

iωt
]
.

We find the time average,

< A(t)B(t) > =
1

4τ

∫ τ

0
dt

[
A0e

−iωt +A∗
0e

iωt
] [
B0e

−iωt +B∗
0e

iωt
]

=
1

4τ

∫ τ

0
dt

[
A0B

∗
0 +A∗

0B0 +A0B0e
−i2ωt +A∗

0B
∗
0e

i2ωt
]

=
1

4
[A0B

∗
0 +A∗

0B0] =
1

2
Re [A0B

∗
0 ] .

Here A and B could be any first-order fields. This can be used to decompose the second order

equations into one set of equations governing the steady component and one set of equations

governing the oscillatory component of the second-order fields. The second order continuity equation

is thus in steady state separated into

0 = −ρ0∇. < v2 > −∇. < ρ1v1 > (3.11a)

−i2ωρ2w2 = −ρ0∇.v2ω
2 −∇.(ρ1v1)

2ω (3.11b)

where we have utilized that < ∂tg2 >= 0 for any steady-state second order field, and ∂tg
2ω
2 =

−i2ωg2ω2 . Similarly, the second-order momentum Equation 3.6 separates into

< ρ1(−iωv1) > +ρ0 < (v1.∇)v1 > = −∇ < p2 > +η∇2 < v2 > +βη∇(∇. < v2 >)

(3.12a)

−i2ωρ0v
2ω
2 + (ρ1(−iωv1))

2ω + ρ0((v1.∇)v1))
2ω = −∇p2ω2 + η∇2v2ω

2 + βη∇(∇.v2ω
2 ). (3.12b)

Equations (3.11b) and (3.12) together with a set of boundary conditions constitute a steady-

state second-order acoustic problem, under the assumptions of adiabatic thermodynamics and single

frequency vibrations of the boundaries. In the bulk fluid, where viscosity can be neglected Equation

(3.12) can be written as,

< ρ1(−iωv1) > +ρ0 < (v1.∇)v1 > = −∇ < p2 > (3.13a)

−i2ωρ0v
2ω
2 + (ρ1(−iωv1))

2ω + ρ0((v1.∇)v1))
2ω = −∇p2ω2 . (3.13b)

As an example, let us consider a rectangular cross section of dimension 380 µm× 160 µm. Using

two-dimensional numerical simulation, the first order acoustic field and second order velocity field is

calculated and is presented in Fig. 2. The ultrasound waves developed by actuating the transducer

via signal generator and amplifier (see Figure 1). The width of the domain is kept is half wavelength

so that the pressure node formation occur at the center of the microchannel (refer to Figure 2(a) ).

The second order acoustic velocity field created four symmetrical vortices inside the domain as seen

in Figure 2(b).
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(a) (b)

Pressure node

Figure 2. (a) first order acoustic pressure field, (b) Streaming velocity field at the 1.96 MHz

resonating frequency in a rectangular cross section 380 µm× 160 µm.

4. Conclusion

We shed light into the derivation of acoustic wave equation from the Navier-Stokes equation using

first order perturbation theory. Further, we presented the acoustic streaming velocity field using

second order velocity field. The acoustic wave theory is useful in understand the acoustic radiation

forces that acts on the particle. The acoustic radiation forces can be utilized for manipulating

microparticles or cells etc. inside a microchannel [10, 11].
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