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1. Introduction

Topology is one of the major mathematical con-

quests of the twentieth century. It deals with

properties that remain unaffected when geomet-

ric shapes are bent, twisted, stretched, shrunk or

otherwise deformed.

The roots of topology can be traced back to

Euler’s formula for a particular class of polyhe-

dra which was later extended to a wider class of

geometrical shapes by Henri Poincare. Poincaré

together with Georg Cantor, Georg Riemann, Mo-

bius and other leading mathematicians of the nine-

teenth century built up the very foundations of the

subject. Topology is so basic in nature that it in-

fluences practically every other branch of mathe-

matics. It has found uses in fields like symbolic

logic, mechanics and psychology. Because it is not

restricted to problems of quantitative nature, it

has found applications even in social sciences.

In this brief note we shall focus upon the ideas

that motivated the emergence and subsequent de-

velopment of the subject.

2. Deformation and Homeomorphism

Let us consider a rubber balloon in the shape of

a sphere usually denoted by S2. By stretching

the sphere outwards at two opposite points we can

transform it into any shape like an ellipsoid or a

dumbbell (Figure 1).

Figure 1
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In fact, by stretching or bending or twisting, a

sphere may be deformed into an ellipsoidal shape

or a dumbbell shape or any other shape in such a

way that geometrical properties of the sphere are

totally lost in the subsequent deformations. Simi-

larly, an inner-tube or a torus or a doughnut may

be deformed into a coffee cup (Figure 2).

Figure 2

From above it is clear that deformation changes

the geometrical properties of a figure.

Though by deformation like stretching, bending

or twisting a geometrical shape S1 may be trans-

formed into a different geometrical shape S2, there

always exists a one-one correspondence between

the points of S1 and S2 such that for every point

P1 of S1, we can find a unique point P2 of S2 and

vice versa.

Figure 3

Mathematically, we can define this correspon-

dence by a bijective function f : S1 → S2 so that

its inverse f (−1) : S2 → S1 is also bijective and

both f and f (−1) are continuous. Such a one-

one correspondence f between S1 and S2 is called

a homeomorphism. Therefore, any deformation

may be called a homeomorphism in a mathemati-

cal sense.

As we have seen, under a homeomorphism (de-

formation) the geometrical properties of a figure

changes. We may now ask here: Is there any prop-

erty of a geometrical figure that remains invariant

under a homeomorphism?

3. Topological Property of a geometrical

shape

3.1. Euler’s Formula for polyhedra

A polyhedron is a geometrical figure consisting

of vertices, edges and faces. Some special types

of polyhedra of historical importance are tetrahe-

dron, cube, octahedron, icosahedron and dodeca-

hedron (Figure 4).

Figure 4

Denoting the number of vertices, edges and

faces of a polyhedron by V,E and F respectively,

let us find V −E+F which is called the Euler Char-

acteristic of the polyhedron denoted by χ. Thus

χ(P ) = V − E + F,

where P is a polyhedron.

For a tetrahedron, we have V = 4, E = 6 and

F = 4. Therefore,

χ(tetrahedron) = V − E + F = 4− 6 + 4 = 2.
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Figure 5

For a cube, we have V = 8, E = 12, F = 6.

Therefore,

χ(cube) = V − E + F = 8− 12 + 6 = 2.

Figure 6

For an octahedron, V = 6, E = 12, F = 8.

Therefore,

χ(octahedron) = V − E + F = 6− 12 + 8 = 2.

Figure 7

Similarly, we can show that

χ(icosahedron) = χ(dodecahedron) = 2.

Therefore, we have the following result.

Theorem: For a polyhedron P , we have,

χ(P ) = V − E + F = 2,

where P is a tetrahedron or cube or an octahedron

or a icosahedron or a dodecahedron. In fact, we

can see that Euler’s characteristic remains invari-

ant for any polyhedron which is homeomorphic to

S2. Therefore, we have the following result.

Theorem: If a polyhedron P is homeomorphic to

a sphere S2 then

χ(P ) = V − E + F = 2.

This is known as Euler’s formula for a polyhedron

P . Thus, Euler’s Characteristic χ is a topological

property.

3.2. Poincaré’s Development of Euler’s

Characteristics

We may ask ourselves here: What will happen to

Euler’s Characteristic if a geometrical shape is not

homeomorphic to a sphere?

Let us consider a torus, also called a doughnut

or an inner-tube. A torus cannot be deformed into

a sphere, i.e. a torus is not homeomorphic to a

sphere. Let us find the Euler’s Characteristic of a

torus. We can see that a torus can be deformed

into a cube with a hole (Figure 8).

Figure 8
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Now we observe that for the cube with a hole

V = 16, E = 32, F = 16. Thus,

χ(cube with one hole) = V − E + F

= 16− 32 + 16

= 0.

However, cube with a hole may be considered as

a polyhedron homeomorphic to a torus which is

nothing but a sphere with one hole. Thus, Euler’s

Characteristic of a polyhedron homeomorphic to a

sphere with one hole is 0.

Next consider a sphere with two holes which

may be deformed into a cube with two holes (Fig-

ure 9).

Figure 9

Clearly the cube with two holes is a polyhedron

having V = 24, E = 48, F = 22. Hence

χ(cube with two holes) = V−E+F = 24−48+22 = −2.

This can be stated as follows:

If a polyhedron P is homeomorphic to a sphere

with two holes then

χ(P ) = −2.

Similarly, if a polyhedron P is homeomorphic to a

sphere with three holes then

χ(P ) = −4.

Let us make this observation as follows:

For a polyhedron P ,

• χ(P ) = 2, if P is homeomorphic to a sphere

with no holes.

• χ(P ) = 0, if P is homeomorphic to a sphere

with one hole.

• χ(P ) = −2, if P is homeomorphic to a sphere

with two holes.

• χ(P ) = −4, if P is homeomorphic to a sphere

with three holes.

In general, we can write χ(P ) = 2 − 2r, if P

is homeomorphic to a sphere with r holes. This

is Poincare’s development of Euler Characteristic

which remains invariant under homeomorphisms

and therefore Euler Characteristic is a topological

property.

3.3. Connectivity of Regions

Let us consider a region D enclosed by a circle and

another regionD1 enclosed between two concentric

circles (Figure 10), i.e. a circle with one hole.

Figure 10

The regions D and D1 are not homeomorphic.

Now every simple closed curve C in D can be

shrunk to a point in D. However, there exists

a simple closed curve C1 in D1 which cannot be

shrunk to a point in D1 without leaving out of the

region D1. But if we make a cut of the region

D1 from boundary to boundary then it becomes

homeomorphic to D and in that case every simple
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closed curve in D1 would be shrunk to a point in

D1 (Figure 11).

Figure 11

We define a region D to be simply connected, if

every simple closed curve can be shrunk to a point

in it. A region is called multiply connected if it is

not simply connected. With these definitions, we

may call a region enclosed by a circle as a simply

connected region while a circular region with any

number of holes as a multiply connected region.

Clearly, the region D1 in Figure 10 which is mul-

tiply connected, can be made simply connected by

making one cut across its boundaries (Figure 11).

Similarly, a region D2 enclosed by a circle with two

holes is multiply connected. But it can be made

simply connected by making two non-intersecting

cuts as shown in Figure 12.

Figure 12

In this way, a region Dn enclosed by a circle

with n holes can be made simply connected by

making n non intersecting cuts.

In this context we define the degree of connec-

tivity as follows: If a multiply connected region can

be made simply connected by making n − 1 non-

intersecting cuts then it is said to have connectivity

of degree n. With this terminology, a simply con-

nected region has connectivity of degree 1 since it

is already simply connected and 1− 1 = 0, i.e. no

cut is necessary here. A circle with one hole is 2

connected or doubly connected since 2− 1 = 1 cut

is necessary to make it simply connected. A circle

with two holes is 3 connected or triply connected

since 3− 1 = 2 cuts are necessary to make it sim-

ply connected. It can be proved that the degree of

connectivity is a topological property.

4. Conclusion

Our discussion here was simply to motivate on

topological properties of surfaces that remain in-

variant under deformation or homeomorphism.

However, in no way it is an exhaustive discussion.

We can similarly examine some more properties of

surfaces under homeomorphism other than defor-

mation such as genus, knots, Jordan Curve Theo-

rem Fixed Point Theorems etc. For that purpose

we have to go a bit deeper into homeomorphisms.
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