Recurrence Relations

Sunaina Pati

Sarala Birla Gyan Jyoti, Guwahati

Abstract. In this short note, we will talk about recurrence relations (exploring the combinatorial side). We don't require any prerequisites.

Suppose, we are given a sequence

$$1, 1, 2, 3, 5, 8, 13 \ldots$$

which satisfies the condition that we can express the next term as the sum of the previous two terms that is 1 + 1 = 2, 2 + 3 = 5, 3 + 5 = 8, 5 + 8 = 13, and so on . This is an example of a mathematical recurrence.

Linear Recurrence: A sequence $\{a_n\}_{n\geq 0}$ satisfies a **linear recurrence** if a_n is expressed as a linear combination of previous terms of the sequence.

Let's understand it with the above example. For the sequence

 $1, 1, 2, 3, 5, 8, 13 \dots$

We have $a_0 = 1, a_1 = 1, a_2 = 2, a_3 = 3, a_4 = 5, a_5 = 8, a_6 = 13, ...$ And note that, by definition every term satisfies

 $a_n = a_{n-1} + a_{n-2}$

with $a_0 = 1, a_1 = 1$. So here we are expressing a_n as a linear combination of previous terms (here a_{n-1} and a_{n-2}).

Homogeneous Recurrence Relation: A recurrence relation is homogeneous if it doesn't contain any constant terms. Else, it is not homogeneous.

For example, the recurrence $a_n = a_{n-1} + a_{n-2}$ is homogeneous but $a_n = a_{n-1} + a_{n-2} + a_{n-3} + 2$ is not homogeneous. So a linear homogeneous recurrence is of the form

$$c_0 a_n + c_1 a_{n-1} + \dots + c_r a_{n-r} = 0,$$

where c_i 's are integers.

49

Characteristic equation: The characteristic equation of the recurrence is

$$c_0 x^r + c_1 x^{r-1} + \dots + c_r = 0$$

If $\alpha_1, \ldots, \alpha_r$ are the distinct roots then

$$a_n = A_1(\alpha_1)^n + A_2(\alpha_2)^n + \dots + A_r(\alpha_r)^n$$
, with A_1, A_2, \dots constants

What about repetitions? For degree two equations, we have

 $a_n = (A + Bn)r^n, r$ is the root, with A, B constants.

Enough of theory! Let's try few examples!

Example 1. Solve the recurrence

$$a_n - a_{n-1} - a_{n-2} = 0$$

Proof. Since the recurrence is

$$a_n - a_{n-1} - a_{n-2} = 0.$$

We get that the characteristic equation is

$$x^2 - x - 1 = 0$$

and it's roots are

$$\alpha_1 = \frac{1+\sqrt{5}}{2}$$
 and $\alpha_2 = \frac{1-\sqrt{5}}{2}$.

Hence

$$a_n = A\left(\frac{1+\sqrt{5}}{2}\right)^n + B\left(\frac{1-\sqrt{5}}{2}\right)^n.$$

Since

$$a_0 = a_1 = 1 \implies A + B = 1, A\left(\frac{1+\sqrt{5}}{2}\right) + B\left(\frac{1-\sqrt{5}}{2}\right) = 1.$$

Solving gives us

$$A = \frac{1 + \sqrt{5}}{2\sqrt{5}}, B = \frac{-1 + \sqrt{5}}{2\sqrt{5}}.$$

 So

$$a_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right].$$

50

Example 2. Find solution to the recurrence relation

$$a_n = 3a_{n-1} + 4a_{n-2}$$

with $a_0 = 2, a_1 = 3$.

Proof. Since the recurrence is

 $a_n = 3a_{n-1} + 4a_{n-2}.$ We have the charecteristic equation as $x^2 - 3x - 4 = 0 \implies (x-4)(x+1) = 0.$ So

So

$$a_0 = 2 \implies A + B = 2$$

 $a_1 = 3 \implies 4a - B = 3$
 $\implies A = 1, B = 1.$
Hence $a_n = 4^n + (-1)^n$.

 $a_n = A \cdot 4^n + B \cdot (-1)^n.$

Example 3 (The stamp problem). Suppose we have 1, 2, 5 valued stamps. The problem is to find the number of ways these can be arranged in a row so that they can add up to a given value n.

Proof. Let a_n be the number of ways the stamp can add up to n. Then we have three cases considering the value of the last stamp.

Case 1: If the last stamp is 1. Then the total value of the remaining stamps must be n-1. Therefore the number of ways in which these remaining stamps can be selected is a_{n-1} .

Case 2: If the last stamp is 2. Then the total value of the remaining stamps must be n-2. Therefore the number of ways in which these remaining stamps can be selected is a_{n-2} .

Case 3: If the last stamp is 5. Then the total value of the remaining stamps must be n-5. Therefore the number of ways in which these remaining stamps can be selected is a_{n-5} .

So
$$a_n = a_{n-1} + a_{n-2} + a_{n-5}$$
.

The following are practice problems for the reader.

Example 4 (Word with no two consecutive As). Find the number of n letter words using letters from the set $\{A, B\}$ in which no two consecutive A can appear.

Example 5 (Classical Stairs). There is a n stair staircase, one can climb 1 or 2 stairs (1 or 2 steps) at a time, in how many ways he can climb the entire staircase?

Example 6 (2020 C1). Let *n* be a positive integer. Find the number of permutations $a_1, a_2, \ldots a_n$ of the sequence 1, 2, ..., *n* satisfying

$$a_1 \le 2a_2 \le 3a_3 \le \dots \le na_n$$

Hint: Let $F_0 = 1, F_1 = 1, F_2 = 2, F_n = F_{n-1} + F_{n-2}$. We claim that the number of permutation is F_n .

Example 7 (2018 USAJMO). For each positive integer n, find the number of n-digit positive integers that satisfy both of the following conditions:no two consecutive digits are equal, and the last digit is a prime.

