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Abstract. I recently completed my PhD in Mathematics from the University of Montreal under

the supervision of Prof. Dimitris Koukoulopoulos in August 2021. My thesis [33], ‘Primes with a

missing digit: distribution in arithmetic progressions and sieve-theoretic applications’ is based on

the distribution of primes in arithmetic progressions and the existence of infinitely many primes of

the form p = 1 + m2 + n2 with a missing digit. The main techniques used in the thesis are the

discrete version of the circle method and the sieve methods. This note gives a short account of the

main results on primes with a missing digit in arithmetic progressions from the thesis [33] and the

preprint [34] (70 pages long) based on the thesis. In order to motivate our results, we first give a

brief account of the prime number theory.

1. Prime numbers

One of the fundamental objects of mathematics

is the set of natural numbers, that is, the set of

counting numbers,

1, 2, . . . .

Clearly, there are infinitely many natural num-

bers, but more importantly, we have the Fun-

damental theorem of arithmetic: every natural

number can be uniquely written as the prod-

uct of prime numbers. For example, 6 = 2× 3.

Here 2 and 3 are the prime numbers. In other

words, prime numbers can be thought of as the

building blocks for the set of natural numbers.

Here we list a few prime numbers:

2, 3, 5, 7, 11, 13, 17, . . . .
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A natural question arises if there are finitely or infinitely many prime numbers. In this direction,

in 300 BC, Euclid gave an elegant proof showing the existence of infinitude of prime numbers by

employing the Fundamental theorem of arithmetic. For any real number x ≥ 2, we let π(x) to count

the number of primes up to x. Then Euclid’s result can be expressed mathematically as

lim
x→∞

π(x) = ∞.

Euclid’s result is impressive. However, it does not give us the rate of growth of π(x) as x

varies. For instance, how many prime numbers are there up to 101000. Of course, trivially, we have

π(x) ≤ x. So, a genuine question is to determine the true size of the function π(x) for some large x.

The mathematical community had to wait till the end of the 18th century to at least guess what the

size of π(x) will be. In 1792-93, Carl Friedrich Gauss conjectured that the density of prime numbers

around a large real number x is 1/ log x. In other words,

lim
x→∞

π(x)

x/ log x
= 1.

The proof of the above statement, known as the Prime Number Theorem (PNT)1, turned out to be

unexpectedly difficult. The above conjecture reveals that the true size of π(x) is ‘roughly’ x/ log x

for a large real number x.

In the 1850s, Chebyshev showed that there exists two positive real numbers C1, C2 > 0 such that

C1
x

log x
≤ π(x) ≤ C2

x

log x
. (1.1)

Furthermore, Chebyshev showed that if limx→∞ π(x) log x/x exists, then the limit has to be equal

to 1. However, he could not show the existence of the limit, which is the crux of the PNT.

To prove the estimate in (1.1), Chebyshev needed to find a quantity that we comprehend

independently of what we know about primes, but at the same time it can be expressed in terms

of primes. Chebyshev’s key idea was that the central binomial coefficient served the purpose. Note

that the central binomial coefficient
(
2n
n

)
is an integer for all positive integer n, and it is divisible by

all primes p ∈ (n, 2n].

In 1859, Riemann wrote his famous memoir, where he outlined his plan to prove the Prime

Number Theorem. The key idea in Riemann’s approach was to use complex analysis and the

theory of analytic continuation to attack this seemingly naive counting problem of primes. Riemann

introduced what is now called the Riemann-zeta function2:

ζ(s) :=
∑
n≥1

1

ns
=

∏
p

(
1− 1

ps

)−1

,

1 For an excellent introduction to the prime number theory, we ask the interested readers to look at Davenport’s book

[7]. In particular, most of the results mentioned in Sections 1 and 2 can be found there, and for those topics not

covered, an attempt has been made to give proper reference.
2 Leonard Euler also considered the same zeta function, however, s > 1 is restricted to only real numbers.
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for3 {s ∈ C : Re(s) > 1}. One can then extend the zeta function analytically to the whole complex

plane, except for a simple pole at s = 1. The Prime Number Theorem (PNT) would then follow if

one could show that ζ(s) ̸= 0 for Re(s) = 1. This idea was then independently utilized by Hadamard

and de la Vallée-Poussin to finally settle the proof of the PNT in 1896.

The proof of the prime number theorem can be considered as one of the greatest triumphs in

mathematics of 19th century. The striking feature being, in order to solve a seemingly naive question

of prime numbers, we need to use complex function theory. One can ask if there is different proof

of the PNT that avoids use of complex analysis. To the surprise of the mathematical community,

in 1950, Atle Selberg [36] and Paul Erdős [9] independently proved PNT without using complex

analysis (which is sometimes referred to as the elementary proof of the prime number theorem4).

Notation

We employ some standard notation that will be used throughout this article.

• Expressions of the form f(x) = O(g(x)), f(x) ≪ g(x) and g(x) ≫ f(x) signify that |f(x)| ≤
C|g(x)| for all sufficiently large x, where C > 0 is an absolute constant. A subscript of the form

≪A means the implied constant may depend on the parameter A. The notation f(x) ≍ g(x)

indicates that f(x) ≪ g(x) ≪ f(x).

• We write f(x) ∼ g(x) to denote f(x)/g(x) → 1 as x → ∞.

• All sums, products and maxima will be taken over N = {1, 2, . . . } unless specified otherwise.

• We reserve the letter p to denote primes.

• For any integers a and b, (a, b) will denote its greatest common divisor (gcd).

• For any set B, #B denote the cardinality of the set B and 1B will denote the indicator function

for the set B, that is 1B(x) = 1 if x ∈ B and 0, otherwise.

• For any natural number n, φ(n) counts the number of positive integers less than n and co-prime

to n.

• We will denote the set of complex numbers by C.

2. Prime numbers in arithmetic progressions

The next step is to investigate the distribution of primes in arithmetic progressions. For example,

what can we say about the primes of the form 4n+1 or 4n+3. Are there infinitely many primes of the

3 Here C denotes the set of complex numbers.
4 We would like to emphasize that elementary does not mean ‘easy’ in number theory, rather it is widely used in the

context of those proofs that avoid the use of complex analysis.
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form, 4n+1 or 4n+3? In 1837, Dirichlet answered this question with the seminal result in analytic

number theory: for any two relatively positive co-prime integers a and q, there are infinitely many

primes in the progression {a + nq : n non-negative integer}. In order to prove this, he introduced

a class of functions now known as Dirichlet characters. His idea was to then study, now called a

Dirichlet L-function,

L(s, χ) =
∑
n≥1

χ(n)

ns
,

where χ is a Dirichlet character. The key and deep input in Dirichlet’s proof is that L(1, χ) ̸= 0.

Dirichlet showed the existence of infinitely many primes in arithmetic progressions. For (a, q) = 1,

it would be natural to consider the following:

π(x; q, a) = #{p ≤ x : p prime, p ≡ a (mod q)},

that counts the number of primes ≤ x and p ≡ a (mod q). Heuristically, we expect that for q ≤ x1−ϵ,

ϵ > 0, we have

π(x; q, a) ∼ π(x)

φ(q)
as x → ∞. (2.1)

The above relation implies that primes are uniformly distributed in reduced residue classes modulo

q. However, proving such an estimate in full uniformity in q is a challenging task.

In the 1930s, Walfisz showed that the relation (2.1) holds for q ≤ (log x)A for some A > 0, using

a result of Siegel on L(1, χ). Under the assumption of the Generalized Riemann Hypothesis (GRH),

however, the range when (2.1) holds can be extended to q ≤ x1/2/(log x)B for some B sufficiently

large. Moreover, Hugh Montgomery [31] conjectured that the relation (2.1) holds in a much wider

range of q ≤ x1−ϵ, for some fixed ϵ > 0.

In many applications, however, it suffices to obtain results that only hold on average over q.

We can therefore substitute the GRH by the celebrated Bombieri-Vinogradov Theorem5, which was

independently established by Enrico Bombieri [1] and A. I. Vinogradov [38] in the 1960s by using

the large sieve. It states that for any A > 0 and B = B(A) sufficiently large in terms of A, we have

∑
q≤x1/2/(log x)B

max
(a,q)=1

∣∣∣∣π(x; q, a)− π(x)

φ(q)

∣∣∣∣ ≪A
x

(log x)A
(2.2)

In other words, the Bombieri-Vinogradov Theorem says that “most” q ≤ x1/2/(log x)B satisfy the

relation (2.1) even when the moduli are essentially as large as that can be handled with the GRH.

One of the major open problems in analytic number theory is to improve the exponent 1/2

in the Bombieri-Vinogradov Theorem. Elliott-Halberstam [8] conjectured that (2.2) should hold

for q ≤ x1−ϵ for any fixed ϵ > 0. We note that improvements on the exponent 1/2 exist for

5 The Bombieri-Vinogradov theorem has many applications. For instance, the works of Goldston-Pintz-Yildirim,

Maynard, Tao on small gaps between primes heavily rest on it. Yitang Zhang also used a variation of the Bombieri-

Vinogradov theorem for his celebrated results on bounded gaps between primes.
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certain sequences of integers, see, for example, the works of Fouvry [12, 13], Fouvry and Iwaniec

[14]. Moreover, Bombieri, Friedlander and Iwaniec [2, 3, 4] wrote a series of papers where they

established a variant of (2.2) for q that go beyond x1/2. More recently, Maynard [28, 29, 30]

improved the previous results of Bombieri, Friedlander and Iwaniec.

3. Prime numbers in general sets

The above examples illustrate the distribution of prime numbers in certain subsets of natural

numbers. More generally, given any infinite subset N of natural numbers, we can ask about the

existence of prime numbers in this set. In general, it is a difficult question and leads to some famous

open problems:

• If N = {p+ 2 : p prime}, then it is equivalent to asking if there are finitely or infinitely many

primes p such that p+ 2 is also a prime number. This is the famous twin prime conjecture.

• If we take N = {n2 +1 : n integer}, then it boils down to asking the infinitude of the primes of

the form n2 + 1, which is also an open problem till date.

• If N = {2p−1 : p prime}, then it is conjectured that there are infinitely many Mersenne primes

2p−1 with p prime. Note that 2p−1 = 1+2+22+ . . .+2p−1, which implies that the infinitude

of Mersenne primes is analogous to asking if there are infinitely many primes with no 0’s in

their binary expansion.

We cannot prove the infinitude of the primes in the above sets, however, sieve methods6 can give

sharp upper bounds for the number of primes in the set N ∩ [2, x] for any large real number x. We

take this opportunity to briefly explain the key idea behind sieve methods. Sieve methods are a set

of techniques which have been developed to deal with certain problems related to the distribution

of primes. The primary goal of sieve methods is to estimate the quantity

S(N , z) := #{n ∈ N : p|n =⇒ p ≥ z},

which counts the number of elements in the set N with no prime factors less than a bound z. This is

done by using a smoothed version of the inclusion-exclusion formula together with the distribution

of the set N in arithmetic progressions. For instance, if N = {p + 2 : p ≤ x} and z = (x + 2)1/2,

then S(N , (x+ 2)1/2) counts p ≤ x such that p+ 2 is a prime > (x+ 2)1/2.

Note that in general, sieve methods alone cannot establish a positive lower bound for the number

of primes in the set, N ∩ [2, x] due to the famous parity phenomenon. But, in some particular cases,

sieve methods do give the matching lower bound for the number of primes in the set N ∩ [2, x],

which requires more ‘arithmetic information’.

6 For a comprehensive account of sieve methods, we invite the interested readers to go through the masterpiece on

sieve methods by Friedlander and Iwaniec [17].

35
Ganit Bikash | Volume 72 | January – March, 2022



Article

We now make a modest attempt to convince the readers why the primes of the form p = n2 + 1

is interesting. Note that the Dirichlet theorem on primes in arithmetic progressions resolves the

prime values of any linear polynomials in one variable. The obvious question to ask is to consider

the prime values of higher degree polynomials in one variable. Of course, we need the polynomials

to be irreducible, or else it cannot take prime values. The polynomial n2 + 1 is the simplest case of

the higher degree polynomial, where we are asking for its prime values. Note that the size of the set

{n2 + 1 ≤ x} is roughly
√
x, which is quite sparse. The sparseness is one of the major obstacles to

applying various techniques to detect infinitely many prime values of the polynomial n2 + 1.

However, things are a bit different if we consider the polynomials in two variables. Note that it

is easier to determine the prime values of m2 + n2, as it is known that m2 + n2 is prime if and only

if it is 2 or a prime of the form 1 (mod 4). Therefore, it boils down to Dirichlet’s theorem. However,

the problem becomes much more interesting and at the same time challenging if one restricts one of

the variables m or n in m2 + n2 to be from some special sets. In this direction, in 1997, Fouvry and

Iwaniec [15] showed that there exists infinitely many primes of the form m2 + n2, where n is also

prime. Later, in the year 1998, Friedlander and Iwaniec [16] made a big breakthrough by showing

the existence of infinitude of primes of the form m2 + n4. Recently, in 2017, Heath-Brown and Li

[20] extended the work of Friedlander-Iwaniec by showing that there exists infinitely many primes of

the form m2 + n4, where n is also prime. All these sets represent the sparse subset of integers. It is

also good to mention another landmark example in this regard. In 2002, Heath-Brown [19] showed

the existence of infinitude of primes of the form m3 + 2n3.

4. Prime numbers with a missing digit

Motivated by the above discussion for our quest for primes in a sparse set, we now focus on the

distribution of prime numbers with some digital restrictions. In order to set up the problem, let

b ≥ 3 be an integer and fix a0 ∈ {0, 1, . . . , b− 1}. Consider7

A :=

{∑
j≥0

njb
j : nj ∈ {0, . . . , b− 1} \ {a0}

}
,

the set of non-negative integers without the digit a0 in their b-adic expansion. For any k ∈ N, the
cardinality of the set A ∩ [1, bk) is ≈ (b − 1)k. If we set X = bk, then we see that there are ≈ Xζ

elements in A less than X, where

ζ :=
log(b− 1)

log b
< 1.

This reveals that A is a ‘sparse set’. It is often the case that sparseness is one of the obstacles

in analytic number theory. However, the set A admits some interesting structure in the sense

that its Fourier transform has an explicit description, which is often small. There has been a

considerable amount of work (see Dartyge-Mauduit [5, 6], Erdős-Mauduit-Sárközy [10, 11], Konyagin

7 The set A denotes the set of integers with a missing digit for the entire article, which we will refer to without further

comment.
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[21], Maynard [25, 26, 27], Pratt [35]) in this direction by exploiting the Fourier structure of the set

A.

It is a natural question to ask if the set A contains infinitely many primes. We expect the answer

to be affirmative. In his celebrated paper [26], Maynard showed that for any X = bk with b ≥ 10

and k → ∞, the relation

#{p < X : p ∈ A} ≍ Xζ

logX

holds. Moreover, for a large base, say b ≥ 2× 106, he [25, 27] established an asymptotic formula. If

b is a sufficiently large positive integer, then for any choice of a0 ∈ {0, . . . , b− 1}, we have

#{p < X : p ∈ A} ∼ κXζ

logX
as X → ∞,

where

κ =
b
(
φ(b)− 1(a0, b)=1

)
(b− 1)φ(b)

.

We are interested in understanding how the primes ofA are distributed in arithmetic progressions.

For (a, q) = 1 and (b, q) = 1, one expects that

#{p < X : p ≡ a (mod q), p ∈ A} ∼ κXζ

φ(q) logX
as X → ∞

holds uniformly for d ≤ Xζ(1−ϵ), for any fixed ϵ > 0. This seems to be a difficult question at present.

Instead, we aim for a Bombieri-Vinogradov Theorem of the following type:

∑
q≤Q

(q,b)=1

max
(a,q)=1

∣∣∣∣#{p < X : p ≡ a (mod q), p ∈ A} − 1

φ(q)
#{p < X : p ∈ A}

∣∣∣∣ ≪A,b
Xζ

(logX)A
,

where Q ≤ X1/2−ϵ, for any fixed ϵ > 0, provided that b is large enough in terms of ϵ (so that ζ is

close enough to 1). Unfortunately, using the current techniques, we are unable to prove that the

above estimate holds for Q ≤ X1/2−ϵ. However, we can prove a weak result in this direction.

For technical convenience, we will work with the von Mangoldt function Λ (recall that Λ(n) = log p

if n = pm, and 0 otherwise). For X = bk with k ∈ N and for (a, q) = (r, b) = 1, we set

E(X; q, a; b, r) :=
∑
n<X

n≡a (mod q)
n≡r (mod b)

Λ(n)1A(n)−
1

φ(q)

b

φ(b)

∑
n<X

n≡r (mod b)

1A(n).

Note that the condition n ≡ r (mod b) in the above is equivalent to n having r as its last digit in

its b-adic expansion. We add this condition in order to simplify some technical details.

We now state one of the theorems from [33, 34].
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Theorem 1. Let δ > 0 and let b be an integer that is sufficiently large in terms of δ. Let

Q ∈ [1, X1/3−δ] and let r ∈ A ∩ [0, b) be an integer such that (r, b) = 1. Then for any A > 0,

we have ∑
q≤Q

(q,b)=1

max
(a,q)=1

∣∣E(X; a, q; b, r)
∣∣ ≪A,b,δ

Xζ

(logX)A
. (4.1)

Next, we can do a little better if we allow our moduli to be the product of two integers. However,

the parameter a is now fixed, so we must drop from (4.1) the expression max(a,q)=1. We can further

have better result in this direction when we replace the absolute value inside the sum over q by a

well-factorable function. For instance, see [33, 34, Theorems 2, 3].

The proof of Theorem 1 uses a discrete version of the circle method, as used by Maynard [26, 27] in

his work. In particular, the proof relies on the Fourier estimates of primes in arithmetic progressions

and the Fourier estimates of the set with missing digits.

4.1. Primes of the form p = 1 +m2 + n2

We end by giving an application of Theorem 1: we prove the existence of infinitely many primes of

the form p = 1 +m2 + n2 with a missing digit in a large odd base b. Before that, we give a brief

history on the problem concerning primes of the form p = 1 +m2 + n2.

The primes of the form p = m2 + n2 + 1 are interesting for many reasons. Perhaps, it is one

of the simplest non-trivial examples of a ‘sparse subset of the primes’ consisting of the values of a

multivariate polynomial. In fact, an application of the sieve methods [32] shows that for any real

number x, we have

#{p ≤ x : p = 1 +m2 + n2, p prime} ≪ x

(log x)3/2
.

It is also known that there are infinitely many primes of the form p = m2 + n2 + 1, a result due to

Linnik [22], who established it by using his dispersion method. Later, a sieve-theoretic proof of this

was given by Iwaniec [18], making use of the linear and semi-linear sieves in conjunction with the

Bombieri-Vinogradov Theorem. For any large real number x, Iwaniec’s proof also established the

matching lower bound8

#{p ≤ x : p = 1 +m2 + n2, p prime} ≫ x

(log x)3/2
.

We can now state our second theorem [33, 34, Theorem 4].

Theorem 2. Let b be an odd integer that is sufficiently large, and let

B = {n : n = n2
1 + n2

2 for some (n1, n2) = 1}
8 We still do not have an asymptotic formula for the number of primes of the form p = m2 +n2 +1 up to any positive

real number x unconditionally.
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denote the set of integers that have a primitive representation as the sum of two squares. Let

r ∈ A ∩ [0, b) with
(
r(r − 1), b

)
= 1. Then we have

Xζ

(logX)3/2
≪b

∑
p<X

p≡r (mod b)

1A(p)1B(p− 1) ≪b
Xζ

(logX)3/2
.

The implicit upper bound in Theorem 2 follows from Theorem 1 and a standard upper bound

sieve estimate. However, for the lower bound, we need to be more careful and use an argument due

to Iwaniec [18] that allows sieving for primes of the form 1 +m2 + n2 using the level of distribution

slightly less than X1/2. Additionally, in order to use the sieve estimates efficiently, we need two

technical results similar to Theorem 1, which we establish using ideas from Matomäki [23, 24],

Maynard [27] and Teräväinen [37].
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J. Number Theory 81 (2000), no. 2, 270–291.
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[23] K. Matomäki, Prime numbers of the form p = m2 + n2 + 1 in short intervals. Acta Arith. 128 (2007), no. 2,

193–200.
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