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1. Introduction & History

The Quadratic Reciprocity law or the ‘Golden Theorem’ is a result in Number Theory about modular

arithmetic. The law was conjectured by Euler and Legendre and was first proved by Gauss. Later,

Gauss gave seven more proofs of the Quadratic Reciprocity law. The best current count finds

246 proofs which makes this law one of the most proved results of Number Theory. The Law

was also mentioned in David Hilbert’s influential opening speech of the International Congress of

Mathematicians in Paris in the year 1900 in which he outlined 23 major mathematical problems to

lead mathematics in the coming century.

In 1640, Fermat was inspired by the book ‘Diophantos’ Arithmetica’ to study about prime

numbers which could be represented as the sum of two squares which induced the first complementary

law of the Quadratic Reciprocity Theorem. Around 1741, Euler was led to the Quadratic Reciprocity

law through his study of quadratic forms inspired by Fermat’s investigations on primes p represented

as p = x2 +Ny2 for N = ±1,±2,±3 with integers x, y ∈ Z. Legendre was the first mathematician

who gave a partial proof of the Law and coined the term ‘Quadratic Reciprocity law’. His work on

the Quadratic Reciprocity Law can be found in his two books: Recherches d’ Analyse Indeterminee

(1785/88) and Essai sur la Theorie des Nombres (1798). In 1801 Gauss gave the first complete

proof of the Quadratic Reciprocity Law in his treatise ‘Disquisitiones Arithmeticae’, where he, in

fact, furnished two entirely different proofs. Altogether Gauss found 8 different proofs, six of which

were published by him and two others were found after his death in his papers. For some background

history, we refer to the article [1].

In this article, we will state and prove the quadratic reciprocity law and show some applications.

We follow mainly the treatment given in Hardy and Wright’s iconic textbook [2].

41
Ganit Bikash | Volume 72 | January – March, 2022



Article

2. Definitions and Preliminary Lemmas

Definition 1. If p is an odd prime (p ∤ a), and x is one of the numbers 1, 2, 3, . . . , p− 1. Then, one

of the numbers 1.x, 2.x, . . . , (p− 1)x is congruent to a (mod p). There is, therefore a unique x′ such

that xx′ ≡ a(mod p), 0 < x′ < p. Here, x′ is the associate of x.

Definition 2. If the congruence

x2 ≡ a (mod p)

has a solution x = x1, we say that a is a quadratic residue of p and write aRp.

Definition 3. If the congruence

x2 ≡ a (mod p)

does not have a solution, we say that a is a quadratic non-residue of p and write aNp.

Definition 4. Legendre’s symbol
(a
b

)
, where p is an odd prime and a is any number not divisible

by p, is defined by (a
b

)
= +1, if aRp,(a

b

)
= −1, if aNp.

Definition 5. If p is an odd prime, there is just one residue of n (mod p) between −1
2p and 1

2p. We

call this residue the minimal residue of n (mod p). It is positive or negative according as the least

non-negative residue of n lies between 0 and 1
2p or between 1

2p and p.

Lemma 6. If p is an odd prime and a is not a multiple of p, then

(p− 1)! ≡ −
(
a

p

)
a

p−1
2 (mod p).

Proof. Given, p is an odd prime and p ∤ a. If x′ is the associate of x then there are two possibilities:

either there is at least one x associated with itself, so that x′ = x, or there is no such x.

Case 1: Suppose that the first alternative is true and that x1 is associated with itself. In this

case the congruence x2 ≡ a (mod p) has the solution x = x1; and a is a quadratic residue of p.

Plainly,

x = p− x1 ≡ −x1 (mod p)

is another solution of the congruence. Also, if x′ = x for any other value x2 of x, we have

x21 ≡ a, x22 ≡ a, (x1 − x2)(x1 + x2) = x21 − x22 ≡ 0 (mod p).

Hence, either x1 ≡ x2 or x2 ≡ −x1 ≡ p − x1; and there are just two solutions of the congruence,

namely x1 and p− x1.

In this case the numbers

1, 2, . . . , p− 1
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may be grouped as x1, p− x1, and
p− 3

2
pairs of unequal associated numbers. Now

x1(p− x1) ≡ −x21 ≡ −a (mod p),

while

xx′ ≡ a (mod p)

for any associated pair x, x′. Hence

(p− 1)! =
∏

x ≡ −a.a
p−3
2 ≡ −a

p−1
2 (mod p).

Case 2: If the second alternative is true and no x is associated with itself, a is a quadratic

non-residue of p. In this case, the congruence

x2 ≡ a (mod p)

has no solution, and the numbers

1, 2, . . . , p− 1

may be arranged in
p− 1

2
associated unequal pairs. Hence

(p− 1)! =
∏

x ≡ a
p−1
2 (mod p).

Using the Legendre symbol, we can conclude the following

(p− 1)! ≡ −
(
a

p

)
a

p−1
2 (mod p).

Lemma 7. Wilson’s Theorem: For a prime p, we have (p− 1)! ≡ −1 (mod p).

Proof. x2 ≡ 1 (mod p) has the solutions x = ±1; hence 1 is a quadratic residue of p and(
1

p

)
= 1.

If we put a = 1 in Lemma 6, we get

(p− 1)! ≡ −1 (mod p).

Lemma 8. If p is an odd prime and a is not a multiple of p, then(
a

p

)
≡ a

p−1
2 (mod p).

43
Ganit Bikash | Volume 72 | January – March, 2022



Article

Proof. From Wilson’s Theorem, we have,

(p− 1)! ≡ −1 (mod p).

Applying Wilson’s Theorem to Lemma 6, we get

−1 ≡ −
(
a

p

)
a

p−1
2 (mod p)

which can be rewritten as (
a

p

)
≡ a

p−1
2 (mod p).

Lemma 9. Gauss’s Lemma: Let m be an integer such that p ∤ m,
(
m
p

)
= (−1)µ, where µ is the

number of members of the set

m, 2m, 3m, . . . ,
p− 1

2
m,

whose least positive residues(mod p) are greater than
p

2
.

Proof. Given, m is an integer such that p ∤ m. Consider the minimal residues of the
p− 1

2
numbers

m, 2m, 3m, . . . ,
p− 1

2
m.

We can write these residues in the form

r1, r2, . . . , rλ, −r′1,−r′2, . . . ,−r′µ, (2.1)

where

λ+ µ =
p− 1

2
, 0 < ri <

p

2
, 0 < r′i <

p

2
.

Since the numbers m, 2m, 3m, . . . , p−1
2 m are incongruent, no two r can be equal, and no two r′. If

an r and an r′ are equal, say ri = r′j , let am, bm be the two of the numbers such that

am ≡ ri (mod p), bm ≡ −r′j (mod p).

Then

am+ bm ≡ 0 (mod p),

and so

a+ b ≡ 0 (mod p),

which is impossible because 0 < a < p
2 , 0 < b < p

2 . Thus, we can say that the numbers ri, r
′
j are a

rearrangement of the numbers

1, 2, 3, . . . ,
p− 1

2
;
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and therefore

m.2m.3m. . .
p− 1

2
m ≡ (−1)µ1.2.3 . . .

p− 1

2
(mod p)

m
p−1
2 ≡ (−1)µ (mod p).

From Lemma 8, we can write (
m

p

)
≡ m

p−1
2 (mod p).

Thus, we obtain, (
m

p

)
≡ (−1)µ.

Lemma 10. If p and q are odd primes and p′ =
p− 1

2
, q′ =

q − 1

2
and

S(p, q) =

p′∑
s=1

[
sq

p

]
,

then

S(p, q) + S(q, p) = p′q′.

Proof. We try to attempt the proof in a geometrical way. In the following figure, AC = q,BC =

p,KM = q′, LM = p′.

0 S

T

K

M

N

PL

B C

A

From the figure, we have p > q and
q′

p′
<

q

p
(as q′ < q and p′ < p). Also, M falls below the
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diagonal OC. Now,

q′

p′
<

q

p

q′ <
qp′

p

=
q

p

(
p− 1

2

)
=

q

2
− 1

2
+

1

2
− q

2p

= q′ +

(
1

2
− q

2p

)
q′ <

qp′

p
< q′ + 1.

Thus, there is no integer between KM = q′ and KN =
qp′

p
. (From similarity of triangles OKN and

OAC.)

We count the number of lattice points in the rectangle OKML in two different ways. First, we

count the points on KM and LM and find the number to be p′q′. There are no lattice points on

OC (since p and q are primes) and none in the triangle PMN except perhaps on PM . Hence the

number of lattice points in OKML is the sum of those in the triangles OKN and OLP .

Number of lattice points on ST , the line x = s is

[
sq

p

]
, as

sq

p
is the ordinate of T (through

similarity of triangles). Hence, the number in OKN is

p′∑
s=1

[
sq

p

]
= S(q, p).

Similarly, the number in OLP is S(p, q) and the conclusion follows.

3. The Quadratic Reciprocity Law

Theorem 11. If p and q are odd primes, then(
p

q

)(
q

p

)
= (−1)p

′q′ ,

where p′ = p−1
2 , q′ = q−1

2 .

Proof. We can write,

kq = p

[
kq

p

]
+ uk, (3.1)

where 1 ≤ k ≤ p′, 1 ≤ uk ≤ p− 1.
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Here uk is the least positive residue of kq (mod p). If uk = vk ≤ p′, then uk is one of the minimal

residues ri of the equation (2.1) in Gauss’s Lemma, while if uk = wk > p′, then uk − p is one of the

minimal residues −r′j . Thus

ri = vk, r′j = p− wk

for every i, j, and some k.

The ri and r′j (as we saw before) are the numbers 1, 2, . . . , p′ in some order. Hence, if

R =
∑

ri =
∑

vk, R′ =
∑

r′j =
∑

(p− wk) = µp−
∑

wk

(where µ is, as in Lemma 3.4, the number of the r′j), we have

R+R′ =

p′∑
v=1

v =
1

2

p− 1

2

p+ 1

2
=

p2 − 1

8
,

and so

µp+
∑

vk −
∑

wk =
1

8
(p2 − 1).

On the other hand, summing equation (3.1) from k = 1 to k = p′, we have

1

8
q(p2 − 1) = pS(q, p) +

∑
uk = pS(q, p) +

∑
vk +

∑
wk.

Subtracting the above two equations, we can deduce,

1

8
(p2 − 1)(q − 1) = pS(q, p) + 2

∑
wk − µp.

Now q − 1 is even, and p2 − 1 ≡ 0 (mod 8) (as p = 2n+ 1, so p2 − 1 = 4n(n+ 1) ≡ 0 (mod 8)); so

that the left-hand side of the equation is even, and also the second term on the right. Hence (since

p is odd)

S(p, q) ≡ µ (mod p),

and therefore, by Gauss’s Lemma, (
q

p

)
= (−1)µ = (−1)S(q,p).

Finally, (
q

p

)(
p

q

)
= (−1)S(q,p)+S(p,q) = (−1)p

′q′ ,

by Lemma 10.

4. Applications

Lemma 12. If p is an odd prime and (p, 5) = 1, then

(
5

p

)
= 1 if and only if p ≡ 1 or 4 (mod 5).
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Proof. By the Quadratic Reciprocity law, we have(
5

p

)
= (−1)

p−1
2

5−1
2

(p
5

)
= (−1)p−1

(p
5

)
=

(p
5

)
(as p is an odd prime). There are two quadratic residues of modulo 5 which are 1 and 4 and two

quadratic non-residues 2 and 3. Thus,

(p
5

)
=

{
1 if p ≡ 1 or 4 (mod 5)

−1 if p ≡ 2 or 3 (mod 5).

Therefore,

(
5

p

)
= 1 if and only if p ≡ 1 or 4 (mod 5).

Theorem 13. There are infinitely many primes of the form 5k + 4.

Proof. Suppose there are finitely many primes congruent to 4 (mod 5), namely p1, p2, . . . , pk.

Consider the number

N = (2p1.p2 . . . pk)
2 − 5.

First we claim that all prime divisors of N are congruent to 1 or 4 (mod 5). Let p be any prime

divisor of N . Then p | (2p1.p2 . . . pk)2−5 and (2p1.p2 . . . pk)
2 ≡ 5 (mod p). Therefore, 5 is a quadratic

residue mod p. By the previous lemma, p ≡ 1 or 4 (mod 5).

Next we claim that N has a prime divisor that is congruent to p ≡ 4 (mod 5). If all the prime

divisors of N are congruent to 1 (mod 5), as product of numbers of the form 5k + 1 is also of the

same form,

N ≡ 1 (mod 5).

On the other hand, we know pi ≡ 4 (mod 5) for all i, so p2i ≡ 16 ≡ 1 (mod 5). Thus, N =

(2p1.p2 . . . pk)
2 − 5 ≡ 4 (mod 5), which is a contradiction. Therefore, there must be at least one

odd prime p dividing N which is congruent to 4 (mod 5).

By assumption, p1, p2, . . . , pk are all the primes congruent to 4 (mod 5). Then p = pi for some i.

We have p | N and p | (2p1.p2 . . . pk)2, so p | 5, which is a contradiction. Hence, there are infinitely

many primes p ≡ 4 (mod 5).
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