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My first research paper titled ‘k-Diophantine

m-tuples in Finite Fields’ [HKM21] has been

uploaded recently on arXiv. It was a joint

work done as a summer research project of

the Polymath Jr. program 2021 supervised by

Dr. Seoyoung Kim (Coleman Postdoctoral Fel-

low, Queen’s University), Prof. Steven Miller

(Professor, Williams College) and Trajan Ham-

monds (Graduate Student, Princeton Univer-

sity). The group of students involved with this

paper included myself, Kyle Onghai (Univer-

sity of California, Los Angeles), Lalit Mohan

Sharma (University of Delhi) and Arjun Nigam

(University of Arizona). As it was my first

tour into the research world of mathematics,

I had quite a unique experience participating

in this program. The Polymath Jr. is an on-

line collaborative research program for under-

graduates. It consists of research projects on

a variety of math topics where each project is

led by an active mathematician with additional

mentors who are normally graduate students.

All of the projects are presented in the first

week and based on the student’s priority op-

tions, they are selected with about 20-25 stu-

dents involved with each project. They are in-

troduced to the material through presentations,

research papers and other resources in the first

few weeks and then through more interactive

sessions and meetings, the group decides on a

particular problem or two to work on. There

are variations done on this approach by a few

mentors.
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The lead mentor of our project, Dr. Kim split the larger 20-25 students into 3 smaller groups as

the topic ‘Diophantine m-tuples’ is quite vast including many research articles published on it. The

groups were made based on each student’s interests and hence, I decided to join the group which

studied Diophantine m-tuples in finite fields. There were meetings on a weekly basis with Dr. Kim,

with Prof. Miller and the graduate student mentor Trajan joining occasionally and offering their

suggestions.

Let us begin with the definition of the term ‘Diophantine m-tuples’.

Definition 1. Let S be a set of m positive integers {a1, a2, . . . , am}. If aiaj + 1 is a perfect square

for all i, j such that 1 ≤ i < j ≤ m, then S is a Diophantine m-tuple.

Similarly, we define a rational Diophantine m-tuple as follows. If S is a set of m positive rationals

and satisfies the same condition, it is called a rational Diophantine m-tuple.

The study of Diophantine m-tuples can be traced to the work of Diophantus of Alexandria,

and has caught the attention of numerous leading mathematicians since then. In the 3rd century,

Diophantus observed that the set of four numbers:
{

1
16 ,

33
16 ,

17
4 ,

105
16

}
satisfy the property that the

product of any two elements in the set is one less than a rational square. This is the first example

of a rational Diophantine quadruple. In the 17th century, Fermat became interested in finding

integer solutions and eventually found the Diophantine quadruple {1, 3, 8, 120}. Euler extended

the Diophantine quadruple given by Fermat to form a rational Diophantine quintuple, namely{
1, 3, 8, 120, 777480

8288641

}
.

The definition leads to many questions relating to the size and existence of Diophantine m-tuples.

A few modifications and generalisations can also made and similar questions can be asked about

them. Here we present a few noteworthy results about Diophantine m-tuples.

The first important result concerning the size of Diophantine m-tuples was given by Baker and

Davenport in 1969 [BD69]. They showed using Baker’s theory on linear forms in logarithms of

algebraic numbers that if d is a positive integer such that {1, 3, 8, d} is a Diophantine quadruple,

then d has to be 120, implying that {1, 3, 8, 120} cannot be extended to a Diophantine quintuple.

In 1979, Arkin, Hoggatt and Strauss showed that any Diophantine triple can be extended to a

Diophantine quadruple [AHS79]. In 2004, Dujella proved that there is no Diophantine sextuple and

that there are at most finitely many Diophantine quintuples [Duj04]. In 2018, He, Togbé and Ziegler

showed that there does not exist a Diophantine quintuple [HTZ18]. In the case of rationals, no

absolute upper bound for the size of rational Diophantine m-tuples is known. Results have been

obtained about rational Diophantine quintuples and sextuples.

There are many generalizations of Diophantine m-tuples. One natural generalization which has

been extensively studied is if we replace the number 1 in “aiaj + 1” with n. These sets are called

Diophantine m-tuples with the property D(n). There have been significant results about the existence

of Diophantine m-tuples with the property D(n) for n = 4,−1 etc.

I assume one question must be bothering everyone: Why should we care? It is quite fair to ask

this question as mentioned by Prof. Ravi Vakil (Professor, Stanford University) in his book ‘The
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Rising Sea: Foundations of Algebraic Geometry ’:

“When introduced to a new idea, always ask why you should care.

Do not expect an answer right away, but demand one eventually.”

Also, this is probably the right moment to ask this as we have listed a few papers on Diophantine

m-tuples. While not being an expert on the topic and hence my inability to mention many relations

or uses of Diophantine m-tuples, I can mention quite a famous connection with everyone’s favorite

math word ‘elliptic curves’.

If {a, b, c} are assumed to form a Diophantine triple, then in order to extend this triple to a

quadruple, the task is to find an integer x such that ax + 1, bx + 1 and cx + 1 are all squares of

integers. Finding a solution x ∈ Z to the three simultaneous conditions implies that there exists

y ∈ Z such that

y2 = (ax+ 1)(bx+ 1)(cx+ 1); (0.1)

this equation describes an elliptic curve. Hence, extending a Diophantine triple to a Diophantine

quadruple is equivalent to finding integer solutions of the mentioned elliptic curve. A more detailed

exposition on Diophantine m-tuples including a list of papers published on them can be found

at [Duj] and [DS21].

Now, coming back to my decision to study and work on Diophantine m-tuples in finite fields, I

decided to pursue it as not much study has been done on Diophantinem-tuples over any commutative

ring with identity and so many more results that might be analogous to the ones in integers can

be found. But the downside was dealing with finite fields or commutative rings with identity are

usually trickier than dealing with integers.

Studies have been made over the ring of integers in a quadratic field and a cubic field over the

years. Recently, Dujella and Kazalicki studied Diophantine m-tuples over finite fields Fp where p

is an odd prime in [DK21]. They proved the existence of a Diophantine m-tuple in Fp where p

is a prime and p > 22m−2m2. Using character sums, they also derive expressions for the number

of Diophantine pairs, triples, and quadruples in Fp for given prime p, and provide an asymptotic

formula for the number of Diophantine m-tuples.

In our work, we defined a new generalization of Diophantine m-tuples called k-Diophantine m-

tuples. One of my project mates first had the idea of this generalisation and with the help of

the references, we decided to proceed further and decode some properties of them. We define k-

Diophantine m-tuples.

Definition 2. Let S be a set ofm positive integers {a1, a2, . . . , am}. If 1+
∏ik

j=i1
aj is a perfect square

for all i1, . . . , ik ∈ {1, 2, . . . ,m} such that 1 ≤ i1 < i2 < · · · < ik ≤ m, then S is a k-Diophantine

m-tuple.

Again, we can ask about the motivation behind this study. One motivation behind studying

these sets is the relationship between k-Diophantine k-tuples and a well-known problem in number

theory known as Brocard’s problem. Brocard’s problem asks for all integer solutions (n,m) to the
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equation n! + 1 = m2. It is clear that if the elements of a k-Diophantine k-tuple are consecutive

natural numbers from 1, then it gives a solution for Brocard’s problem. Currently, there are only

three known pairs of numbers solving Brocard’s problem: (4, 5), (5, 11), (7, 71). Erdős conjectured

that no other solutions exist.

Another motivation is the connection between 3-Diophantine triples and elliptic curves. Similar to

the previous connection, the problem of extending a 3-Diophantine triple {a, b, c} to a 3-Diophantine

quadruple {a, b, c, d} is equivalent to finding integer solutions of the elliptic curve

y2 = (abx+ 1)(acx+ 1)(bcx+ 1). (0.2)

Hence, for even the simpler cases of k and m, finding k-Diophantine m-tuples is already of the same

complexity and importance as finding integral solutions of an elliptic curve.

Throughout our work in this paper, the primary reference we used was the paper by Dujella and

Kazalicki [DK21]. Similar to their study in the paper, we studied k-Diophantine m-tuples in finite

fields Fp where p is an odd prime. Prof. Dujella was also very kind enough to grant us access to

his book Number Theory [DS21] which was a huge help in understanding Diophantine m-tuple, its

history and the various methods used to solve and interpret Diophantine m-tuples over the years.

In our paper, we showed the existence of at least one k-Diophantine m-tuple for all primes p that

are sufficiently large, and gave a formula for the number of 3-Diophantine triples in Fp. We also

gave an asymptotic formula for the number of k-Diophantine k-tuples. I briefly describe here each

of our results.

In our search for the existence of a k-Diophantine m-tuple in Fp we tried a similar idea that was

used before to prove the existence of Diophantine m-tuple in Fp and after doing a few modifications

and dirty calculations, we were able to complete the proof. We first proved the theorem for k = 3

and then tried to expand and generalise the proof. Here’s the statement of the theorem about the

existence of k-Diophantine m-tuple in Fp:

Theorem 3. Let m ≥ k be an integer. If p > 4(
m

k−1)+1

(
( m
k−1)
2 +m+ 1

)2

is a prime, then there

exists at least one k-Diophantine m-tuple in Fp.

The number 4(
m

k−1)+1

(
( m
k−1)
2 +m+ 1

)2

was the result of a lot of dirty calculations and doesn’t

hold much importance. We observed that the existence should actually be true for a smaller bound

but unfortunately, we couldn’t prove it.

Being able to prove the existence made us more confident about our next task: counting k-

Diophantine m-tuples. After studying similar results in other papers, we conjectured a formula

for counting 3-Diophantine triples. The observations and intuition behind the conjecture were

supported by our mentors. To get a verification and also the possibility of getting an insight, one

of our project mates, Rowan McKee (California State University, East Bay) designed a computer

program for writing the number of 3-Diophantine triples. When we compared the formula with

the results obtained computationally, we saw trends that gave us the assurance about the formula’s

accuracy. Proceeding with the proof, we had three separate summands to work on, out of which one
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was trivial, one required the help of certain results on Legendre symbols and the Gauss’ Theorem 8

and the third one was dealt like a separate problem we termed as ‘counting problem’. The counting

problem was proved by using properties of quadratic residues and Euler’s criterion about quadratic

residues. The statements of the formula for determining number of 3-Diophantine m-tuples and the

counting problem are given below:

Theorem 4. Let N3(p) be the number of 3-Diophantine triples in Fp. If p ≡ 1 mod 3, let a be an

integer such that a ≡ 2 mod 3 and p = a2 + 3b2 for some integer b > 0. Then,

N3(p) =

a+1
3 +

(
p−1
3

)
/2, for p ≡ 1 (mod 3)(

p−1
3

)
/2, for p ≡ 2 (mod 3).

(0.3)

Theorem 5.

#
{
(a, b, c) ∈ F3

p : abc+ 1 ≡ 0 (mod p)
}

=

(p− 2)(p− 3) + 4, if p ≡ 1 (mod 3)

(p− 2)(p− 3), if p ≡ 2 (mod 3).
(0.4)

Counting the number of k-Diophantine m-tuples in general is very difficult. Since we studied the

formulation of an asymptotic formula for Diophantinem-tuples in finite fields in the paper by Dujella

and Kazalicki [DK21], we also tried to see if an asymptotic formula is within reach. Even though

we could not a find a wholly successful general formula, we found a formula for the special case:

k-Diophantine k-tuples. We used Weil’s Theorem 9 for character sums in proving the asymptotic

formula.

Theorem 6. Let Nk(p) be the number of k-Diophantine k-tuples in Fp. Then

Nk(p) ∼
pk

k! · 2
+ o(pk). (0.5)

Since the proofs of the above theorems are quite long and need the aid of preliminary results like

Gauss’ Theorem and Weil’s Theorem, we will stick to proving a special case of Theorem 3 (when

k = 3) in this article. This special case was the first result we proved and it marked the beginning

of the research work in our project.

We state the case of Theorem 3 when k = 3:

Theorem 7. Let m ≥ 3 be an integer. If p > 2m
2−m−2(m2 + 3m+ 4)

2
is a prime, then there exists

at least one 3-Diophantine m-tuple in Fp.

Proof. We prove this theorem by induction on m. For m = 3 and a prime p such that

p > 23
2−3−2(32 + 3(3) + 4)

2
= 7744, (0.6)

we have the 3-Diophantine triple {2, 3, 4} in Fp. Indeed, p ≥ 5 is large enough to guarantee the

existence of this 3-Diophantine triple. Suppose that there exists at least one 3-Diophantine m-tuple

in Fp.
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Now, we want to prove that there exists a 3-Diophantine (m+ 1)-tuple in Fp where p is a prime

such that p > 2m
2+m−2(m2 + 5m+ 8)

2
. Let us take a prime p such that

p > 2(m+1)2−(m+1)−2{(m+ 1)2 + 3(m+ 1) + 4)}2

= 2m
2+m−2(m2 + 5m+ 8)

2
.

Clearly, p > 2m
2−m−2(m2 + 3m+ 4)

2
. Thus, by the induction hypothesis, there exists a 3-

Diophantine m-tuple {a1, a2, . . . , am} in Fp. Define

g := #

{
x ∈ Fp :

(
aiajx+ 1

p

)
= 1 where i, j ∈ Z, 1 ≤ i < j ≤ m

}
(0.7)

= #

{
x ∈ Fp :

(
x+ aiaj

p

)
=

(
aiaj
p

)}
(0.8)

for all i, j such that 1 ≤ i < j ≤ m, where ai denotes the multiplicative inverse of ai in Fp. We will

prove that g− (m+1) > 0, which guarantees that there exists x ∈ Fp, x /∈ {0, a1, . . . , am} such that(
aiajx+1

p

)
= 1 with 1 ≤ i < j ≤ m. By choosing pairs in Fp in

(
m
2

)
ways and using exercise 5.64 of

[LN97], ∣∣∣∣∣g − p

2(
m
2 )

∣∣∣∣∣ ≤

{(
m
2

)
− 2

2
+

1

2(
m
2 )

}
√
p+

(
m
2

)
2

g ≥ p

2(
m
2 )

−

{(
m
2

)
− 2

2
+

1

2(
m
2 )

}
√
p−

(
m
2

)
2

≥ p

2
m(m−1)

2

−

(
m(m− 1)− 4

4
+

1

2
m(m−1)

2

)
√
p− m(m− 1)

4
.

Since (
m(m− 1)

4
− 1 +

1

2
m(m−1)

2

)
√
p+

m(m− 1)

4
+m+ 1

<

(
m2 −m

4
− 1 +

1

2
m(m−1)

2

+
1

2
m(m−1)

2
+1

)
√
p

=

(
m2 −m

4
− 1 +

3

2
m(m−1)

2
+1

)
√
p

<
m(m− 1)

√
p

4
<

p

2
m(m−1)

2

,

we find, g > m+ 1. So, there exists a 3-Diophantine (m+ 1)-tuple {a1, . . . , am, x} in Fp.

Personally, I had a wonderful time working on the project. Besides working on the project, I

learnt a lot about mathematics and its culture by interacting with my fellow mates and our mentors.

It was the first time I tasted the joy of being a mathematician. The challenge that we and all the

other students in various projects experienced made me realise that we were incredibly lucky to get

a few results on our first research project within a limited time period.
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Appendix

Theorem 8 (Gauss’ Theorem). Let E(Fp) : y2 = x3 + D be an elliptic curve. Then for p ≡ 1

(mod 3),

#E(Fp) =



p+ 1 + 2a if D is a sextic residue mod p

p+ 1− 2a if D is cubic but not a quadratic residue mod p

p+ 1− a± 3b if D is a quadratic but not a cubic residue mod p

p+ 1 + a± 3b if D is neither quadratic nor cubic residue mod p

where a is an integer such that a ≡ 2 (mod 3) and p = a2 + 3b2 for some integer b > 0. For p ≡ 2

(mod 3),

#E(Fp) = p+ 1.

Proof. See [IR90, pg. 305, Theorem. 4].

Theorem 9 (Weil’s Theorem). Let χ be an nth order non-trivial multiplicative character in the

finite field Fq. Let f(x) be a degree d polynomial in Fq such that f(x) ̸= kg(x)n for any polynomial

g(x) and constant k in Fq. Then ∣∣∣∣∣∣
∑
x∈Fq

χ(f(x))

∣∣∣∣∣∣ ≤ (d− 1)
√
q.

Proof. See [IK04, Theorem. 11.23].
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[HTZ18] B. He, A. Togbé, and V. Ziegler. There is no Diophantine quintuple. Transactions of the American

Mathematical Society, 371(9):6665–6709, May 2019.

[IK04] H. Iwaniec and E. Kowalski. Analytic Number Theory, page 302. American Mathematical Society

Colloquium Publications. American Mathematical Society, 2004.

[IR90] K. Ireland and M. Rosen. A Classical Introduction To Modern Number Theory, page 305. Number Volume

84 in Graduate Texts in Mathematics. Springer, 1990.

[LN97] R. Lidl and H. Niederreiter. Finite Fields. Number v. 20, pt. 1 in EBL-Schweitzer. Cambridge University

Press, 1997.

57

Ganit Bikash | Volume 73 | April – June, 2022

https://arxiv.org/abs/2201.06232
https://web.math.pmf.unizg.hr/~duje/dtuples.html

