5 Problems 1 solution

Pankaj Agarwal

E-mail: pamathsfac@gmail.com

Under the title '5 problems 1 solutions', we intend to discuss 5 problems which can be solved using the same concept. We intend to keep the concept basic. In this particular article, the concept we will be using is as follows.

If p is a prime number and p > 3, then p is of the form 6k + 1 or 6k - 1, where k is some integer and p^2 is of the form 24m + 1 where m is some integer.

Proof. Any integer can be written in the form 6k + 0, 6k + 1, 6k + 2, 6k + 3, 6k + 4, or 6k + 5, for some integer k. But 6k + 0, 6k + 2, 6k + 4 are multiples of 2, while 6k + 3 is a multiple of 3. So, if p is a prime number and if p > 3, then only possibilities are for 6k + 1 and 6k + 5.

Case I: If p = 6k + 1, then $p^2 = 36k^2 + 12k + 1$, i.e., $p^2 = 12k(3k + 1) + 1$. But k(3k + 1) is always even. So, $p^2 \equiv 1 \pmod{24}$.

Case II: If p = 6k + 5, then $p^2 = 36k^2 + 60k + 25 = 12k(3k + 5) + 24 + 1$. Again k(3k + 5) is always even. So, $p^2 \equiv 1 \pmod{24}$.

So, in both cases p^2 is of the form 24k + 1, for some integer k.

Now, how will this concept be applied in problems? To see exactly how this concept will be used, let us look into some examples.

Problem 1. Find all primes p such that the number $p^2 + 11$ has exactly six different divisors (including 1 and the number itself).

(Russia, 1995)

Solution. If p > 3, then $p^2 = 24k + 1$, for some integer k. So, $p^2 + 11 = 12(2k + 1)$, which has more than 6 factors as 12 itself has 6 factors.

So, we just need to check for p = 2 and p = 3. If p = 2, then $p^2 + 11 = 15$, which has exactly 4 factors. If p = 3, then $p^2 + 11 = 20 = 2^2 \times 5^1$ has exactly 6 factors.

Therefore, p = 3 is the only possibility.

Ganit Bikash | Volume 73 | April – June, 2022

Problem 2. Prove that $a^4 - 10a^2 + 9$ is divisible by 1920 for every prime number a > 5.

(Croatia, 1996)

Solution. Since a > 5 is a prime number, so $a^2 = 24k + 1$, for some integer k. Therefore,

$$a^{4} - 10a^{2} + 9 = (a^{2} - 1)(a^{2} - 9) = 24k(24k - 8)$$
$$= 24 \times 8 \times k \times (3k - 1)$$

Now, k(3k-1) is always even. So, let $a^4 - 10a^2 + 9 = 24 \times 8 \times 2 \times m$, where *m* is some integer. That is, $a^4 - 10a^2 + 9$ is a multiple of $2^7 \times 3$.

Now, $1920 = 2^7 \times 3 \times 5$. So, we just need to prove that $a^4 - 10a^2 + 9$ is also a multiple of 5.

Since a is prime and a > 5. So, $a = 5\ell + 1$, $5\ell + 2$, $5\ell + 3$, or $5\ell + 4$, for some integer ℓ .

Now, $a^4 - 10a^2 + 9 = (a+1)(a-1)(a+3)(a-3)$. Again, if $a = 5\ell + 1, 5\ell + 2, 5\ell + 3$, or $5\ell + 4$, we have a - 1, a + 3, a - 3, or a + 1 is a multiple of 5 respectively. So, $a^4 - 10a^2 + 9$ is a multiple of 5.

Hence, $a^4 - 10a^2 + 9$ is a multiple of 1920.

Problem 3. Let *n* be a positive integer and $p_1, p_2, p_3, \ldots, p_n$ be *n* prime numbers all greater than 5 such that 6 divides $p_1^2 + p_2^2 + p_3^2 + \cdots + p_n^2$. Prove that 6 divides *n*.

(RMO India, 1998)

Solution. Since $p_i > 5$ for all i = 1, 2, 3, ..., n, so $p_i^2 = 24k_i + 1$ for some integers k_i for all i = 1, 2, 3, ..., n.

Given that 6 divides $p_1^2 + p_2^2 + p_3^2 + \dots + p_n^2$, i.e., 6 divides $24(k_1 + k_2 + k_3 + \dots + k_n) + n$. Therefore, 6 divides n.

Problem 4. Determine the gcd of all numbers of the form $p^8 - 1$, where p is a prime number and p > 5.

(Belgium, Flanders Math Olympiad, 1996)

Solution. As p is a prime number and p > 5, we get $p^2 = 24k + 1$ for some integer k. Therefore,

$$p^{8} - 1 = (p^{2} - 1)(p^{2} + 1)(p^{4} + 1) = 24k(p^{2} + 1)(p^{4} + 1).$$

Since $p^2 = 24k + 1$, we get $p^2 + 1$ and $p^4 + 1$ both are even, but neither of them is divisible by 3 and 4.

Again, by Fermat's Little Theorem, we get $p^4 - 1$ is a multiple of 5. So, $p^8 - 1$ is a multiple of 5. Therefore, $p^8 - 1$ is a multiple of $24 \times 2 \times 2 \times 5 = 480$. So, the required gcd is a multiple of 480. Now,

$$7^8 - 1 = (7^2 - 1)(7^2 + 1)(7^4 + 1) = 24 \times 2 \times (7^2 + 1)(7^4 + 1) = 480 \times 2 \times \frac{(7^2 + 1)(7^4 + 1)}{20},$$

and

$$11^8 - 1 = (11^2 - 1)(11^2 + 1)(11^4 + 1) = 24 \times 5 \times (11^2 + 1)(11^4 + 1) = 480 \times 5 \times \frac{(11^2 + 1)(11^4 + 1)}{20}.$$

Now,

$$\gcd\left(2 \times \frac{(7^2+1)(7^4+1)}{20}, 5 \times \frac{(11^2+1)(11^4+1)}{20}\right) = \gcd\left(25 \times 1201, 61 \times 7321\right) = 1.$$

Therefore the required gcd is 480.

Similar Question: Determine the largest positive integer that divides $p^6 - 1$ for all primes p > 7.

(Junior Balkan Maths Olympiad, Shortlist, 2016)

Problem 5. Let $p_1 < p_2 < p_3 < p_4$ and $q_1 < q_2 < q_3 < q_4$ be two sets of prime numbers, such that $p_4 - p_1 = 8$ and $q_4 - q_1 = 8$. Suppose $p_1 > 5$ and $q_1 > 5$. Prove that 30 divides $p_1 - q_1$.

(INMO, 2012)

Solution. Since $p_1, q_1 > 5$, so both p_1 and q_1 are of the form 6k + 1 or 6k - 1, for some integer k.

If $p_1 = 6k + 1$, then $p_4 = p_1 + 8 = 6k + 9$ becomes a multiple of 3, which is not possible as p_4 is a prime number. Similarly, q_1 can also not be of the form 6k + 1.

So, let $p_1 = 6m - 1$ and $q_1 = 6n - 1$, for some integers m and n. Therefore, $p_1 - q_1 = 6(m - n)$. That is $p_1 - q_1$ is a multiple of 6.

If $p_1 = 6m - 1$ is a prime, then the next possible primes are of the form 6m + 1, 6m + 5, 6m + 7, But $p_4 = 6m + 7$, so the possible form of p_1, p_2, p_3 and p_4 are 6m - 1, 6m + 1, 6m + 5 and 6m + 7respectively. Similarly, the possible form of q_1, q_2, q_3 and q_4 are 6n - 1, 6n + 1, 6n + 5 and 6n + 7respectively. So, if $p_1 = x$, then $p_2 = x + 2$, $p_3 = x + 6$ and $p_4 = x + 8$. And so is for the q's.

Now, any prime $p_1 > 5$ can be of the form 5k + 1, 5k + 2, 5k + 3 or 5k + 4, for some integer k.

If $p_1 = 5k + 2$, then $p_4 = p_1 + 8 = 5k + 10$, a multiple of 5, which is not possible.

If $p_1 = 5k + 3$, then $p_2 = p_1 + 2 = 5k + 5$, a multiple of 5, which is not possible.

If $p_1 = 5k + 4$, then $p_3 = p_1 + 6 = 5k + 10$, a multiple of 5, which is not possible.

But, p_1 may be of the form 5k + 1, and the same is true for q_1 .

Therefore, $p_1 - q_1$ is a multiple of 5.

Hence 30 divides $p_1 - q_1$.