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1. Introduction

The extremal principle is a problem-solving tactic, wherewith one tries to look at objects with
extreme (maximal or minimal) properties. Extremal principle is best understood by solving
problems. Before going into problems, understanding the notions of convex hull and base lines
is necessary.

• The convex hull of a finite set of points is the least unique convex polygon which contains all
these points. Here, the term “least” means that the polygon is not contained in any other such
polygon.

• A base line of a convex polygon is a line passing through a vertex such that the polygon lies
completely on one side of it. It is easy to verify that for any convex polygon, there exist precisely
two base lines parallel to a given line.

It’s now time to solve some problems.
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2. Problems with Solutions

Problem 1: There exists no quadruple of positive integers (x, y, z, w) satisfying

x2 + y2 = 3(z2 + w2).

Solution: Suppose there exist such quadruples. Let (a, b, c, d) be a solution with the smallest value
of x2 + y2. Then a2 + b2 = 3(c2 + d2) ⇒ 3|a2 + b2 ⇒ 3|a, 3|b (Why?) ⇒ a = 3a1, b = 3b1 for some
a1, b1 ∈ Z. But a2 + b2 = 9(a2

1 + b2
1) = 3(c2 +d2) ⇒ c2 +d2 = 3(a2

1 + b2
1), i.e., (c, d, a1, b1) is a solution

such that c2 + d2 < a2 + b2, a contradiction. Therefore, there exists no positive integer solutions of
the given equation. □

Problem 2: Imagine an infinite chessboard that contains a positive integer in each square. If the
value in each square is equal to the arithmetic mean of the values in its four neighbour squares
(north, south, west and east), prove that all the positive integers are equal to each other.

Solution: Consider the smallest positive integer (say m) on the board. Since m is equal to the
arithmetic mean of the values in its four neighbour squares (say a, b, c, d), therefore a+b+c+d = 4m.
Now since m is the smallest positive integer on the board, so none of a, b, c, d can be smaller than
m. Also, none of a, b, c, d can be greater than m, otherwise a + b + c + d would be greater than 4m.
Therefore, each of a, b, c, d is equal to m i.e., a = b = c = d = m. It follows that all the positive
integers on the board are equal. □

Problem 3: In a badminton singles tournament, each player played against all the others exactly
once and each game had a winner. After all the games, each player listed the names of all the players
she defeated as well as the names of all the players defeated by the players defeated by her. Prove
that at least one player listed the names of all other players.

Solution: Assume, to the contrary, that no player listed the names of all other players. Then there
is a player (say A) whose list contains maximum number of players. Since A’s list does not contain
the names of all other players, so A has lost against some player (say B), otherwise if A had won
all the games, her list would contain the names of all other players. But this implies that B’s list
contain more names than that of A, a contradiction. Therefore, there is at least one player who
listed the names of all other players. □

Problem 4: At a marriage party, no boy dances with every girl, but each girl dances with at least
one boy. Prove that there are two girl-boy couples g1b1 and g2b2 who dance such that g1 doesn’t
dance with b2 and g2 doesn’t dance with b1. [Putnam, 1965]

Solution: There is a boy (say b1) who dances with most girls. Since no boy dances with every girl,
so there is a girl (say g2) with whom b1 doesn’t dance. Also, since every girl dances with at least
one boy, therefore g2 dances with at least one boy (say b2). Now if we show that there is a girl with
whom b1 dances but b2 doesn’t, then we are done. Assume to the contrary that b2 dances with all
the girls with whom b1 has danced. But this implies that b2 has danced with the most number of
girls (because b2 has danced with g2 also), a contradiction. Therefore, there is a girl (say g1) with
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whom b1 dances but b2 doesn’t. Hence, there are two couples g1b1 and g2b2 who dance such that g1

doesn’t dance with b2 and g2 doesn’t dance with b1. □

Problem 5: Rooks are placed on the n × n chessboard satisfying the following condition: If the
square (i, j) is free, then at least n rooks are on the ith row and jth column together. Show that
there are at least n2/2 rooks on the board.

Solution: WLOG, we consider a row that has the least number of rooks (say m) on it. If m ≥ n/2,
then each row has at least n rooks on it and hence there are at least mn = n2/2 rooks on the board.
If m < n/2, then through the n − m free squares in the row, there are n − m columns which contain
at least n − m rooks each so that there are at least n − m + m = n rooks on each column and the
row together. Hence there are at least (n − m)(n − m) = (n − m)2 rooks on all the columns through
a free square in that row. Since each of the columns through the m non-free squares in that row has
at least m rooks on it, therefore there are at least m × m = m2 rooks on all the columns through a
non-free square in that row. Hence, there are at least (n − m)2 + m2 rooks on the board. Now,

(n − m)2 + m2 = n2 + (n − 2m)2

2 ≥


n2

2 , if n is even

n2 + 1
2 , if n is odd.

Therefore, there are at least n2/2 rooks on the board. □

Problem 6: Let f(x) be a polynomial of degree n with real coefficients such that f(x) ≥ 0 ∀x ∈ R.
If g(x) = f(x) + f ′(x) + · · · + f (n)(x), then show that g(x) ≥ 0 ∀x ∈ R.

Solution: Since f(x) ≥ 0, we first try to look at the value(s) of x for which f(x) is minimal. To
prove that the minimal value exists, we proceed as follows. Let

f(x) = anxn + an−1xn−1 + · · · + a1x + a0,

where each ai ∈ R. Since f(x) ≥ 0, so an > 0 because the leading term anxn dominates the value of
f(x) for large values of |x|. Also, the degree of f(x) i.e., n must be even. Thus

lim
n→−∞

f(x) = lim
n→+∞

f(x) = +∞,

and hence f(x) has a minimum value. Since g(x) has the same leading term as f(x), so g(x) also has
a minimum value. We are to prove that g(x) ≥ 0 ∀x ∈ R. Assume, to the contrary, that g(x) < 0
for some value(s) of x. Let g(x) attains it’s minimum at x = x0. Therefore, g(x0) < 0. Now,

g′(x) = f ′(x) + f ′′(x) + · · · + f (n+1)(x).

Since f(x) is of degree n, so f (n+1)(x) = 0. Therefore,

g′(x) = f ′(x) + f ′′(x) + · · · + f (n)(x) = g(x) − f(x).

Since g(x0) < 0 and f(x0) ≥ 0, therefore g′(x0) = g(x0)−f(x0) < 0, which is a contradiction because
by assumption g(x) attains it’s minimum at x = x0, so g′(x0) must be equal to zero. Therefore,
g(x) ≥ 0 ∀x ∈ R. □
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Problem 7: Let Ω be a set of points in the plane. Each point in Ω is a midpoint of two points in
Ω. Prove that Ω is an infinite set.

Solution: Suppose Ω is a finite set. Then Ω contains two points A, B with maximal distance
AB = d. By the hypothesis, ∃ some C, D ∈ Ω such that B is the mid-point of CD. Therefore,
AC > AB or AD > AB a contradiction to AB = d being the maximal distance. □

Problem 8: Prove that in every convex pentagon, we can choose three diagonals from which a
triangle can be constructed.

Solution: Let ABCDE be a convex pentagon and BE be it’s longest diagonal. Join BE, BD and
EC.

A B

C

D

E X

By triangle inequality in ∆BEX and ∆CDX, we have BX + EX > BE and CX + DX > CD.
Adding, we have (BX + DX) + (EX + CX) > BE + CD ⇒ BD + CE > BE + CD > BE. Hence,
the sides BD, CE and BE form a triangle. □

Problem 9: Suppose there are finitely many red and blue points on a plane with the property that
every line segment joining two points of the same colour contains a point of another colour. Prove
that all the points lie on a single straight line.

Solution: Suppose that the points do not lie on a single straight line. Therefore, finitely many
triangles can be drawn with those finitely many points as vertices. So, there exists a triangle (say T )
with least area. Since there are points of two distinct colours, so at least two vertices of the triangle
have the same colour.

Suppose two vertices of the triangle are of same colour (say red) and the other is blue. Then
there is a blue point on the line joining the two red vertices. Now the blue point is joined with the
blue vertex to obtain two triangles on either side with area less than that that of T , a contradiction.

Similar argument follows if all the vertices are of same colour. Therefore, all the points lie on a
single straight line. □
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Problem 10: There are n points in a plane such that the area enclosed by any three of the points
do not exceed 1. Prove that a triangle can be drawn with area not more than 4 that contains all n

points. [Korea, 1995]

Solution: Among all the triangles formed by the n points, consider the triangle (say, ABC) with
maximum area (not exceeding 1). Let A′B′C ′ be it’s anti-complementary triangle, i.e., the triangle
formed by the parallels to the sides of ∆ABC and passing through it’s vertices. So ∆ABC is
the medial triangle of ∆A′B′C ′, with area of ∆A′B′C ′ not exceeding 4. Now we shall prove that
∆A′B′C ′ contains all n points. Assume to the contrary that ∃ a point (say, P ) outside ∆A′B′C ′.
WLOG, assume that the line A′B′ separates the point P from ∆A′B′C ′.

A

B
C

A′

B′C ′

P

But then the area of ∆ABC is greater than that of ∆ABC (Why?), a contradiction. It follows that
the given statement is true. □

Problem 11: A strip of width w is the set of all points which lie on or between two parallel lines
that are at at a distance w apart. Let S be a set of n (n ≥ 3) points on the plane such that any
three different points of S can be covered by a strip of width 1. Prove that S can be covered by a
strip of width 2. [Balkan MO 2010]

Solution: Among all the triangles formed by the n points in S, consider the triangle (say, ABC)
with maximum area. Proceeding as in Problem 10, we can prove that all the points in S should lie
inside the anti-complementary triangle (say A′B′C ′) of ∆ABC, otherwise we have a contradiction.
By the property of S, ∆ABC has altitudes of length at most 1, so ∆A′B′C ′ has altitudes of length
at most 2 (Why?). Hence, S can be covered by a strip of length 2. □

Problem 12: Find all sets S of finitely many points in the plane, no three of which are collinear
and such that for any three points A, B, C in S, there is another point D in S such that A, B, C, D

(in some order) are the vertices of a parallelogram. [USA TST 2005]

Solution: We claim that any such set S contains at most 4 points. Assume, to the contrary, that S

has more than 4 points. Consider points A, B, C in S such that ∆ABC has the maximum possible
area over all choices of A, B, C. Now there is a point D such that ABCD is a parallelogram. Now,
any other point P in S cannot lie outside ABCD because in that case, the area of ∆ABP will be
greater than that of ∆ABP (assuming WLOG that the line CD separates P from AB).
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A

B C

D

P

Therefore, P lies inside ABCD. But then for any point Q in S such that ABPQ is a parallelogram,
Q lies outside ABCD.

A

B C

D

P

Q

Now, the area of ∆BQC is greater than that of ∆ABC (assuming WLOG that the line AD separates
Q from BC), a contradiction. Therefore, any such set S contains at most 4 points. □

Problem 13: (Sylvester) Prove that every finite set of points in the Euclidean plane has a line that
passes through exactly two points or a line that passes through all of them.

Solution: (L.M. Kelly) Let Ω be the finite set of points, not all collinear. Define a connecting line
to be a line that contains at least two points of Ω, and an ordinary line to be a line that contains
exactly two points among the connecting lines. Since there are finitely many points in Ω, so there
are finitely many connecting lines. Thus, ∃ a point P in Ω and a connecting line l with minimum
non-zero distance (say PQ) between them such that PQ ⊥ l. It can be proven that l is ordinary by
contradiction as follows.

Assume that l is not ordinary. It follows that l contains at least three points (say P1, P2, P3) of
Ω. Therefore, at least two of those points (say P2, P3) are on the same side of Q. Let P2 be the
closest to Q (with possibly coinciding with it). Let m be the connecting line joining PP3. But the
perpendicular P2Q′ from P2 to m is shorter than PQ, a contradiction to the assumption that PQ

is the minimum distance between a point in Ω and a connecting line.

P1 P2 P3

P

Q

Q′

l

m

It follows that l is ordinary. □
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Problem 14: Prove that any convex polygon of area 1 can be placed inside a rectangle of area 2.

Solution: Let AB be the greatest diagonal (or side) of the polygon. Line l and m perpendicular to
AB are drawn. For any vertex X of the polygon, AX ≤ AB and BX ≤ AB. Therefore, the polygon
lies inside the band formed by the lines l and m. Draw the base lines (say p and q) of the polygon
parallel to AB and let these lines pass through vertices C and D of the polygon respectively. Let
KLMN be the rectangle formed by the lines l, m, p and q.

A B

C

D

K

L M

N

l m

p

q

Now, [KLMN ] = [KABN ] + [ALMB] = 2[ABN ] + 2[ABM ] = 2[ABC] + 2[ABD] = 2[ABCD],
where [∗] denotes the area of ∗. Now, [ABCD] ≤ 1 since ABCD is contained inside the polygon.
Therefore, [KLMN ] ≤ 2, i.e., any convex polygon of area 1 can be placed inside a rectangle of area
2. □

Problem 15: Prove that in the coordinate plane, the vertices of a regular pentagon cannot be all
lattice points.

Solution: Suppose there exist such pentagons. Among all such pentagons, consider the one with
the least area. Let v⃗i = aiî + biĵ for i ∈ {1, 2, 3, 4, 5} be the it’s five side vectors that point
from one vertex to the next and a2

i + b2
i = p2, where p is the length of the side of the regular

pentagon. Therefore,
5∑

i=1
v⃗i = 0 and hence

5∑
i=1

ai = 0 and
5∑

i=1
bi = 0. Squaring and adding, we have

( 5∑
i=1

ai
)2 +

( 5∑
i=1

bi
)2 = 0 ⇒

5∑
i=1

a2
i +

5∑
i=1

b2
i + 2

∑
1≤i<j≤5

(aiaj + bibj) = 0. Therefore,
5∑

i=1
a2

i +
5∑

i=1
b2

i is

even. Since a2
i + b2

i = p2, so
5∑

i=1
a2

i +
5∑

i=1
b2

i = 5p2. Hence p2 is even, which implies that ai and bi are

of same parity. If a1 and b1 are both odd, then 4 ̸ | a2
1 + b2

1 = k2. Therefore, all ai and bi are odd.

But then the sum of five odd numbers
5∑

i=1
ai ̸= 0, a contradiction. If a1 and b1 are both even, then

4| a2
1 + b2

1 = k2. Therefore, all ai and bi are even. But then we can scale our pentagon by 1
2 to get a

regular pentagon with lattice points having smaller area, a contradiction. □

Problem 16: The lengths of a triangle’s bisectors do not exceed 1. Prove that the area of the
triangle does not exceed 1√

3 .

Solution: Let ∠A be the smallest angle of ∆ABC. Therefore, ∠A ≤ 60◦, otherwise ∠A is no longer
the smallest angle. Let AD be the angle bisector of ∠A such that D lies on BC. Draw AP ⊥ BC
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and CQ ⊥ AB such that P and Q lie on BC and AB respectively. WLOG, suppose P lies between
B and D (with possibly coinciding with B or D).

A

B
CDP

Q

Now, cos∠BAP = AP
AB . Since ∠BAD ≥ ∠BAP , therefore cos∠BAD = cos A

2 ≤ cos∠BAP ≤ AD
AR ≤

AD
AB (assume R to be on extended AB such that RD ⊥ AD, therefore AR ≥ AB), i.e., AB ≤ AD

cos A
2

≤

AD

cos 30◦ ≤ 1
√

3
2

, i.e., AB ≤ 2√
3

. Since perpendicular is the shortest distance from a point to a line,

so CQ ≤ the angle bisector of C ≤ 1. Therefore, [ABC] = 1
2AB × CQ ≤ 1

2AB × 1 ≤ 1
2 × 2√

3
,i.e.,

[ABC] ≤ 1√
3

. Thus, if the lengths of a triangle’s bisectors do not exceed 1, then the area of the

triangle does not exceed 1√
3 . □

Problem 17: Given four points in plane not on one line. Prove that at least one of the triangles
with vertices in these points is not an acute one.

Solution: Consider the convex hull of the four points. If it is a quadrilateral (say ABCD) and
∠ABC is the largest angle, then ∠ABC ≥ 90◦ and hence ∆ABC is not acute. Let ∆ABC be the
convex hull and D be a point in it’s interior. WLOG, let ∠ADB be the largest among ∠ADB,
∠BDC and ∠CDA. Therefore, ∠ADB ≥ 120◦ and hence ∆ADB is not acute.

A

B C

D

Hence, the given four points form at least one triangle that is not acute. □

Problem 18: (Happy Ending Problem) Five points in the plane are given, no three collinear. Prove
that some four of them form a convex quadrilateral.

Solution: Consider the convex hull of the points. If it is a pentagon or a quadrilateral (with one
point in it’s interior), then it is clearly true. If the convex hull is a triangle (with two points in it’s
interior), then it can be proven as follows. Let ∆ABC be the convex hull and D and E be two
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points in it’s interior. DE is joined and extended on both sides. Hence two vertices of the triangle
(WLOG, say A and B) lies on one side of extended DE. Then points A, B, D and E form a convex
quadrilateral.

A

B C
D

E

Hence, four among the five given points form a convex quadrilateral. □

Problem 19: There are n ≥ 3 coplanar points, no three of which are collinear and every four of
them are the vertices of a convex quadrilateral. Prove that the n points are the vertices of a convex
n-sided polygon.

Solution: Consider the convex hull W of the n points. So all the n points are either inside or on
W . If we prove that no point lies inside W , then W will be the required convex n-sided polygon
and we are done. Assume, to the contrary, that some point P among those n points lies inside W .
If Q is any vertex of W , then there exist vertices R and S of W such that P lies completely inside
∆QRS. But then PQRS is not a convex quadrilateral, a contradiction.

RS

P

Q

Hence, W is the n-sided polygon on which all the n points lie as vertices. □

Problem 20: A set S of points in the plane will be called completely symmetric if it has at least
three elements and satisfies the following condition: For every two distinct points A, B from S the
perpendicular bisector of the segment AB is an axis of symmetry for S. Prove that if a completely
symmetric set is finite then it consists of the vertices of a regular polygon. [IMO 1999 P1]

Solution: Consider a convex hull W of the set of points in S with n sides (n ≥ 3).
Claim 1: All sides of W have equal length.
Proof: Assume to the contrary that W has two sides AB and BC of unequal length. WLOG,
suppose AB > BC. But then the perpendicular bisector of AC reflects B to B′ such that B′ lies
outside W , a contradiction.
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A

B
C

B′

Therefore, all sides of W have equal length.
Claim 2: All angles of W are also equal and hence W is a regular polygon.
Proof: For n = 3, it is obvious because if all sides of a triangle are equal, then the angles are also
equal. Take n > 3 and assume to the contrary that A, B, C, D are four points of W such that
∠ABC ̸= ∠BCD. WLOG, suppose ∠ABC > ∠BCD. But then the perpendicular bisector of BC

reflects A to A′ such that A′ lies outside W , a contradiction.

A

A′

B

C

D

Therefore, W is a regular polygon.
Claim 3: No point of S lies inside W i.e., all points of S lie on W .
Proof: Assume, to the contrary that ∃ a point P of S lying inside W . Let Ω be the circumcircle of
W and join P with any vertex A of the polygon. Let the perpendicular bisectors of AB meet Ω at
X and Y . Let B be any vertex of the polygon lying on the major arc of XY . But then XY reflects
B to B′ such that B′ lies outside Ω and hence outside W , a contradiction.

A

B

P

X

Y

B′
Ω

Therefore, all points of S lie on W . Hence, if a completely symmetric set is finite then it consists of
the vertices of a regular polygon. □
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3. Practice Problems with Hints

Problem 21: There are finitely many points on a circle, and each point is given a positive integer
that is equal to the average of the numbers of its two nearest neighbours. Prove that all the positive
integers are equal.
Hint: This is similar to Problem 2. Consider the smallest positive integer m. Then m = a + b,
where a and b are it’s nearest neighbours, etc.

Problem 22: Given n points in the plane, no three collinear, prove that there is a polygon with all
n points as its vertices.
Hint: Consider the path with the shortest length (say P1P2 · · · PnP1). If this path has no self-
intersections, then it is a polygon. Assume, to the contrary, that the segments PiPi+1 and PjPj+1

intersect at X. Apply triangle inequality and prove that replacing these segments with PiPj and
Pi+1Pj+1 gives a path with a shorter length, etc.

Problem 23: In the plane, there are given finitely many pairwise non-parallel lines such that
through the intersection point of any two of them one more of the given line passes. Prove that all
these lines pass through one point.
Hint: Assume, to the contrary, that not all lines pass through one point. Let the least non-zero
distance from an intersecting point P to a line l be PQ. At least three of those lines (say l1, l2, l3)
pass through P and they intersect l at P1, P2, P3 (say). Then proceed similar to Problem 13.

Problem 24: Given n ≥ 3 points on the plane not all of them on one line. Prove that there is a
circle passing through three of the given points such that none of the remaining points lies inside
the circle.
Hint: Consider points A and B such that AB is minimal. Are there points inside the circle with
AB as diameter? Any point C with maximal ∠ACB lies on the circle, etc.

Problem 25: Let A be a set of 2n points in the plane, no three collinear. Suppose that n of them
are coloured red, and the remaining n blue. Prove or disprove: there are n straight line segments,
no two with a point in common, such that the endpoints of each segment are points of A having
different colours. (Putnam, 1979)
Hint: This can be proved as follows. Consider the configuration with the minimal total path length.
Consider two line segments PiPi+1 and PjPj+1 intersecting (i.e., having a point in common) at X

and proceed as in Problem 22.
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